A. | 2520 | B. | 1440 | C. | -1440 | D. | -2520 |
分析 根據(jù)展開式中各項系數(shù)的和2求得a的值,再把二項式展開,求得該展開式中常數(shù)項.
解答 解:令x=1可得(x+$\frac{a}{x}$)(3x-$\frac{2}{x}$)5的展開式中各項系數(shù)的和為(a+1)=3,∴a=2.
∴(x+$\frac{a}{x}$)(3x-$\frac{2}{x}$)5 =(x+$\frac{2}{x}$)(3x-$\frac{2}{x}$)5
=(x+$\frac{2}{x}$)( ${C}_{5}^{0}$•243x5-${C}_{5}^{1}$•162x3+${C}_{5}^{2}$•108x-${C}_{5}^{3}$•$\frac{72}{x}$+${C}_{5}^{4}$•$\frac{48}{{x}^{3}}$-${C}_{5}^{5}$•$\frac{32}{{x}^{5}}$),
故該展開式中常數(shù)項為-${C}_{5}^{3}$•72+2•108${C}_{5}^{2}$=1440,
故選:B.
點評 本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),求二項展開式各項的系數(shù)和的方法,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 4個 | C. | 6個 | D. | 8個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 |
數(shù)學(xué)分數(shù)x | 89 | 91 | 93 | 95 | 97 |
物理分數(shù)y | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com