13.已知集合M={0,1,2,3},N={x|x2-x-2≤0},P=M∩N,則集合P的子集共有( 。
A.2個(gè)B.4個(gè)C.6個(gè)D.8個(gè)

分析 由M與N,求出兩集合的交集確定出P,找出P的子集個(gè)數(shù)即可.

解答 解:∵N={x|x2-x-2≤0},
∴N={x|-1<x<2},
∵M(jìn)={0,1,2,3},
∴P=M∩N={0,1},
則P的子集共有22=4個(gè).
故選B.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列不等式成立的是( 。
A.若|a|<b,則a2>b2B.若|a|>b,則a2>b2C.若a>b,則a2>b2D.若a>|b|,則a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x2-ax-alnx(a∈R),g(x)=-x3+$\frac{5}{2}$x2+2x-6,g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時(shí),f(x)≥b恒成立,則a的取值范圍( 。
A.a≤2B.a≤1C.a≤-1D.a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.讀如圖的程序,若輸入x=-2,則輸出y=(  )
A.4B.0C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.化簡(jiǎn)sin(α-$\frac{π}{2}$)•tan(π-α)=sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知銳角三角形ABC中的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,向量$\overrightarrow{m}$=(2sinB,$\sqrt{3}$),$\overrightarrow{n}$=(2cos2$\frac{B}{2}$-1,cos2B),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求函數(shù)f(x)=sin2xcosB-cos2xsinB的最小正周期及單調(diào)遞增區(qū)間.
(2)若b=4,求三角形ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.觀察下列各式:a+b=1,a2+b2=3,a3+b3=5,a4+b4=7…,則a10+b10=(  )
A.15B.17C.19D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了判斷高中二年級(jí)學(xué)生是否選修文科與性別的關(guān)系,現(xiàn)隨機(jī)抽取50名學(xué)生,得到如下2×2列聯(lián)表:
理科文科合計(jì)
189
815
合計(jì)
(1)請(qǐng)完善上表中所缺的有關(guān)數(shù)據(jù);
(2)試通過計(jì)算說明在犯錯(cuò)誤的概率不超過多少的前提下,認(rèn)為選修文科與性別有關(guān)系?
附:
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.(x+$\frac{a}{x}$)(3x-$\frac{2}{x}$)5的展開式中各項(xiàng)系數(shù)的和為3,則該展開式中常數(shù)項(xiàng)為( 。
A.2520B.1440C.-1440D.-2520

查看答案和解析>>

同步練習(xí)冊(cè)答案