已知等差數(shù)列中,,數(shù)列中,,
(Ⅰ)求數(shù)列的通項公式,寫出它的前項和
(Ⅱ)求數(shù)列的通項公式。

(1),;
(2)

解析試題分析:解:(I)設(shè),由題意得,,
所以;                  6分
(II),,
所以, 
 ()
,
所以數(shù)列的通項;                12分
考點:等差數(shù)列
點評:主要是考查了等差數(shù)列的通項公式和求和的運用,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)是數(shù)列的前項和,,.
(1)求證:數(shù)列是等差數(shù)列,并的通項;
(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列{}中,=14,前10項和. (1)求
(2)將{}中的第2項,第4項,…,第項按原來的順序排成一個新數(shù)列{},令,求數(shù)列{}的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列的前項積為,且 .
(Ⅰ)求證數(shù)列是等差數(shù)列;
(Ⅱ)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)等差數(shù)列中,已知,試求n的值
(2)在等比數(shù)列中,,公比,前項和,求首項 和項數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列滿足,數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,且滿足 (),,設(shè),
(1)求證:數(shù)列是等比數(shù)列;
(2)若,,求實數(shù)的最小值;
(3)當時,給出一個新數(shù)列,其中,設(shè)這個新數(shù)列的前項和為,若可以寫成 ()的形式,則稱為“指數(shù)型和”.問中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等差數(shù)列中,成等比數(shù)列,
(1)求數(shù)列的通項公式; (2)求前20項的和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列中,,前10項的和
(1)求數(shù)列的通項公式;
(2)若從數(shù)列中,依次取出第2、4、8,…,,…項,按原來的順序排成一個新的數(shù)列,試求新數(shù)列的前項和.

查看答案和解析>>

同步練習冊答案