【題目】已知某運(yùn)動員每次投籃命中的概率都為50%,現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員四次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1,2,3,4表示命中,5,6,7,8 9表示不命中;再以每四個隨機(jī)數(shù)為一組,代表四次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):9075 9660 1918 9257 2716 9325 8121 4589 5690 6832 4315 2573 3937 9279 5563 4882 7358 1135 1587 4989

據(jù)此估計,該運(yùn)動員四次投籃恰有兩次命中的概率為____

【答案】0.35

【解析】

由題意得20組隨機(jī)數(shù)中,該運(yùn)動員四次投籃恰有兩次命中的有7個,據(jù)此能求出該運(yùn)動員四次投籃恰有兩次命中的概率.

由題意可得20組隨機(jī)數(shù)中,該運(yùn)動員四次投籃恰有兩次命中的有:

,共7個,

據(jù)此估計,該運(yùn)動員四次投籃恰有兩次命中的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求的定義域;

2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明;

3)若在區(qū)間上恒取正值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在道路邊安裝路燈,路面,燈柱高14,燈桿與地面所成角為30°.路燈采用錐形燈罩,燈罩軸線與燈桿垂直,軸線,燈桿都在燈柱和路面寬線確定的平面內(nèi).

(1)當(dāng)燈桿長度為多少時,燈罩軸線正好通過路面的中線?

(2)如果燈罩軸線AC正好通過路面的中線,此時有一高2.5 的警示牌直立在處,求警示牌在該路燈燈光下的影子長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,離心率

(I)求橢圓C的標(biāo)準(zhǔn)方程;

(II)已知直線交橢圓C于A,B兩點(diǎn).

①若直線經(jīng)過橢圓C的左焦點(diǎn)F,交y軸于點(diǎn)P,且滿足.求證:為定值;

②若,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為01,02,03,,49,50的50個個體組成,利用隨機(jī)數(shù)表(以下選取了隨機(jī)數(shù)表中的第1行和第2行)選取5個個體,選取方法是從隨機(jī)數(shù)表第1行的第9列和第10列數(shù)字開始由左向右讀取,則選出來的第4個個體的編號為( )

78 16 65 72 08 02 63 14 07 02 43 69 69 38 74

32 04 94 23 49 55 80 20 36 35 48 69 97 28 01

A. 05 B. 09 C. 07 D. 20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓軸的左右交點(diǎn)分別為,與軸正半軸的交點(diǎn)為.

(1)若直線過點(diǎn)并且與圓相切,求直線的方程;

(2)若點(diǎn)是圓上第一象限內(nèi)的點(diǎn),直線分別與軸交于點(diǎn),點(diǎn)是線段的中點(diǎn),直線,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線E交于AB兩點(diǎn),且,其中O為原點(diǎn).

1)求拋物線E的方程;

2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為函數(shù)的導(dǎo)函數(shù),且.

(1)判斷函數(shù)的單調(diào)性;

(2)若,討論函數(shù)零點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是平面四邊形的對角線, ,且.現(xiàn)在沿所在的直線把折起來,使平面平面,如圖.

(1)求證: 平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案