1.在△ABC中,角A,B,C的對邊分別為a,b,c,且sinA+cos2$\frac{B+C}{2}$=1,D為BC上一點(diǎn),且$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$.
(1)求sinA的值;
(2)若a=4$\sqrt{2}$,b=5,求AD的長.

分析 (1)利用降冪公式,三角形內(nèi)角和定理,誘導(dǎo)公式化簡已知可得5sin2A-4sinA=0,結(jié)合范圍A∈(0,π),即可解得sinA的值.
(2)由余弦定理可得c2-6c-7=0,解得c的值,利用平面向量的運(yùn)算可求$\overrightarrow{AD}$2的值,進(jìn)而可求AD的值.

解答 解:(1)∵sinA+cos2$\frac{B+C}{2}$=1,
∴sinA+$\frac{1+cos(B+C)}{2}$=1,即2sinA-cosA=1,…2分
∴(2sinA-1)2=cos2A,即5sin2A-4sinA=0,
∵A∈(0,π),
∴sinA>0,
∴sinA=$\frac{4}{5}$,cosA=$\frac{3}{5}$…6分
(2)∵a=4$\sqrt{2}$,b=5,cosA=$\frac{3}{5}$,
∴由余弦定理可得:32=25+c2-2×5c×$\frac{3}{5}$,即:c2-6c-7=0,解得:c=7,…10分
∵$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$,
∴$\overrightarrow{AD}$2=$\frac{{c}^{2}}{16}$+$\frac{9^{2}}{16}$+$\frac{3}{8}$bccosA=$\frac{49}{16}$+$\frac{9}{16}×25$+$\frac{3}{8}×7×5×\frac{3}{5}$=25,…12分
∴AD=5…14分

點(diǎn)評 本題主要考查了降冪公式,三角形內(nèi)角和定理,誘導(dǎo)公式,余弦定理,平面向量的運(yùn)算在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在四棱錐P-ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成角為45°,若E是PB的中點(diǎn),則異面直線DE與PA所成角的余弦值為(  )
A.$\frac{{3\sqrt{10}}}{20}$B.$\frac{{\sqrt{10}}}{20}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|0<x<2},B={x|x2-1≤0},那么A∪B=( 。
A.{x|0<x≤1}B.{x|-1≤x<2}C.{x|-1≤x<0}D.{x|1≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},0≤x≤a}\\{lo{g}_{3}x,x>a}\end{array}\right.$,其中a>0
①若a=3,則f[f(9)]=$\sqrt{2}$;
②若函數(shù)y=f(x)-2有兩個(gè)零點(diǎn),則a的取值范圍是[4,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)$f(x)={sin^2}x-\sqrt{3}cosxcos({x+\frac{π}{2}})$,則f(x)在$[{0,\frac{π}{2}}]$上的單調(diào)遞增區(qū)間為[0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知變換T將平面上的點(diǎn)$({1,\frac{1}{2}}),({0,1})$分別變換為點(diǎn)$({\frac{9}{4},-2}),({-\frac{3}{2},4})$.設(shè)變換T對應(yīng)的矩陣為M.
(1)求矩陣M;
(2)求矩陣M的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>a>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}中,a3=9,a8=29.
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn的表達(dá)式;
(2)記數(shù)列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n項(xiàng)和為Tn,求Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;(a>b>0)$的右焦點(diǎn)為F(1,0),離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過F且斜率為1的直線交橢圓于M,N兩點(diǎn),P是直線x=4上任意一點(diǎn).求證:直線PM,PF,PN的斜率成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案