表面積為27π的半球體的體積是
 
考點:球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:根據(jù)球的體積,表面積公式求解即可,先求半徑,再運用公式求解.
解答: 解:∵球體的體積公式
R3
3
,面積4πR2
∴半球體的體積為
R3
3
,半球的面積2πR2,
∵表面積為27π的半球體,
∴3πR3=27π,
∴R=3,
即體積
3
×27=18π,
故答案為:18π.
點評:本考查了球的體積,表面積公式,屬于計算題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(a2-4a+4)ax是指數(shù)函數(shù),則a的值是(  )
A、4B、1或3C、3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(
1
4
+2x)n展開式中前三項的二項式系數(shù)和為37,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C表示雙曲線,求m的范圍;
(2)若曲線C是焦點在x軸上的橢圓,求m的范圍;
(3)設(shè)m=4,曲線C與y軸交點為A,B(A在B上方),y=kx+4與曲線C交于不同兩點M,N,y=1與BM交于G,求證:A,G,N三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點,且經(jīng)過點P(3,0),a=3b,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
y2
4
+
x2
3
=1的兩個焦點F1,F(xiàn)2,M是橢圓上一點,且|MF1|-|MF2|=1,則△MF1F2是( 。
A、鈍角三角形
B、直角三角形
C、銳角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

考慮一元二次方程x2+mx+n=0,其中m,n的取值分別等于將一枚骰子連擲兩次先后出現(xiàn)的點數(shù),則方程有實根的概率為(  )
A、
19
36
B、
7
18
C、
4
9
D、
17
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足條件
x-y+2≤0
3x-2y+6≥0
y-2≤0
,則函數(shù)z=-2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知∠A為銳角,f(A)=
(cos2A+1)sinA
2(cos2
A
2
-sin2
A
2
)
+
cos2A+1
2

(1)將f(A)化簡成f(A)=Msin(ωA+φ)+N(M>0,N∈R)的形式;
(2)若f(A-
5
24
π)≥
2
2
+
1
2
恒成立,BC=2,求b+c的取值范圍?

查看答案和解析>>

同步練習冊答案