2.求下列函數(shù)的導(dǎo)數(shù):
(1)$y=2{x^3}+\root{3}{x}+cosx-1$
(2)y=(x3+1)(2x2+8x-5)
(3)$y=\frac{{lnx+{2^x}}}{x^2}$.

分析 根據(jù)函數(shù)的導(dǎo)數(shù)公式分別進(jìn)行求導(dǎo)即可.

解答 解:(1)函數(shù)的導(dǎo)數(shù)為y′=6x2+$\frac{1}{3}$x${\;}^{-\frac{2}{3}}$-sinx,
(2)函數(shù)的導(dǎo)數(shù)為y′=3x2(2x2+8x-5)+(x3+1)×(4x+8)=10x4+32x3-15x2+4x+8.
(3)函數(shù)的導(dǎo)數(shù)為y′=$\frac{(\frac{1}{x}+{2}^{x}ln2){x}^{2}-(lnx+{2}^{x})•2x}{{x}^{4}}$=$\frac{1-2lnx+(xln2-2){2}^{x}}{{x}^{3}}$.

點(diǎn)評 本題主要考查函數(shù)的導(dǎo)數(shù)的計(jì)算,要求熟練掌握常見函數(shù)的導(dǎo)數(shù)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l:x-y+3=0和圓C:(x-1)2+y2=1,P為直線l上一動點(diǎn),過P作直線m與圓C切于點(diǎn)A,B.
(Ⅰ)求|PA|的最小值;
(Ⅱ)當(dāng)|PA|最小時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.方程sin2x=cosx,x∈[0,2π]的解集是{$\frac{π}{2}$,$\frac{3π}{2}$,$\frac{π}{6}$,$\frac{5π}{6}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等差數(shù)列{an}中,若a2+a4+a6+a8+a10=80,則${a}_{7}-\frac{1}{2}{a}_{8}$的值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在區(qū)間[0,2π]內(nèi)任取一個實(shí)數(shù)x,使得$cosx≥\frac{{\sqrt{2}}}{2}$的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.《算數(shù)書》竹簡于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍,其中記載有求“蓋”的術(shù):置如其周,令相承也.又以高乘之,三十六成一.該術(shù)相當(dāng)于給出了有圓錐的底面周長L與高,計(jì)算其體積V的近似公式V≈$\frac{1}{48}$L2h,它實(shí)際上是將圓錐體積公式中的圓周率π近似取為4,那么近似公式V≈$\frac{1}{75}$L2h相當(dāng)于將圓錐體積公式中π的近似取為( 。
A.$\frac{25}{6}$B.$\frac{25}{8}$C.$\frac{25}{3}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x,y滿足$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目標(biāo)函數(shù)z=3x+y的最大值為10,則m的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)$f(x)=ln({\sqrt{{x^2}+1}-x})$,若a,b滿足不等式f(a2-2a)+f(2b-b2)≤0,則當(dāng)1≤a≤4時,2a-b的最大值為(  )
A.1B.10C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=x-$\frac{2}{x}$的圖象關(guān)于( 。
A.y軸對稱B.原點(diǎn)對稱C.直線y=x對稱D.直線y=-x對稱

查看答案和解析>>

同步練習(xí)冊答案