19.在如圖所示的幾何體中,四邊形ABCD是邊長為3的菱形,∠DAB=60°,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-C的平面角的余弦值.

分析 (Ⅰ)推導(dǎo)出AC⊥BD,AC⊥DE,由此能證明AC⊥平面BDE.
(Ⅱ)以AC,BD的交點O建立如圖所示的空間直角坐標系O-xyz,利用向量法能求出二面角F-BE-C的平面角的余弦值.

解答 證明:(Ⅰ)已知,四邊形ABCD是菱形,所以AC⊥BD,
又DE⊥平面ABCD,AC?平面ABCD,
所以AC⊥DE,BD∩DE=D,
所以AC⊥平面BDE.…(5分)
解:(Ⅱ)BE與平面ABCD所成角為60°,DE⊥平面ABCD,
所以,∠EBD=60°.
四邊形ABCD是邊長為3的菱形,所以BD=3,$ED=3\sqrt{3}$,$AF=\sqrt{3}$.
如圖,以AC,BD的交點O建立如圖所示的空間直角坐標系O-xyz,
則$B({0,\frac{3}{2},0}),A({\frac{{3\sqrt{3}}}{2},0,0}),C({-\frac{{3\sqrt{3}}}{2},0,0}),F(xiàn)({\frac{{3\sqrt{3}}}{2},0,\sqrt{3}}),E({0,-\frac{3}{2},3\sqrt{3}})$.$\overrightarrow{BC}=({-\frac{{3\sqrt{3}}}{2},-\frac{3}{2},0}),\overrightarrow{BF}=({\frac{{3\sqrt{3}}}{2},-\frac{3}{2},\sqrt{3}}),\overrightarrow{BE}=({0,-3,3\sqrt{3}})$
設(shè)平面FBE的法向量為$\overrightarrow{n}$=(x1,y1,z1),
則$\left\{\begin{array}{l}{\overrightarrow{BE}•\overrightarrow{n}=\frac{3\sqrt{3}}{2}{x}_{1}-\frac{3}{2}{y}_{1}+\sqrt{3}{z}_{1}=0}\\{\overrightarrow{BF}•\overrightarrow{n}=-3{y}_{1}+3\sqrt{3}{z}_{1}=0}\end{array}\right.$,令z1=3,得$\overrightarrow{n}$=(1,3$\sqrt{3}$,3),
設(shè)平面BEC的法向量為$\overrightarrow{m}$=(x2,y2,z2),
則$\left\{\begin{array}{l}{\overrightarrow{BE}•\overrightarrow{m}=-\frac{3\sqrt{3}}{2}{x}_{2}-\frac{3}{2}{y}_{2}=0}\\{\overrightarrow{BC}•\overrightarrow{m}=-3{y}_{2}+3\sqrt{3}{z}_{2}=0}\end{array}\right.$,令z2=1,得$\overrightarrow{m}$=(-1,$\sqrt{3}$,1),
設(shè)二面角F-BE-C的平面角為θ,
則cosθ=-$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=-$\frac{11}{\sqrt{5}•\sqrt{37}}$=-$\frac{11\sqrt{185}}{185}$,…(10分)
二面角F-BE-C的平面角的余弦值為$-\frac{{11\sqrt{185}}}{185}$.…(12分)

點評 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

已知函數(shù)的定義域為,當時,,對任意的,成立,若數(shù)列滿足,且,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標系xOy中,曲線C1的參數(shù)方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.(t$為參數(shù),0≤α<π),以原點O為極點,以x軸正半軸為極軸,已知曲線C2的極坐標方程為ρ=4cosθ,射線$θ=ϕ,θ=ϕ+\frac{π}{4},θ=ϕ-\frac{π}{4}$與曲線C2相交,交點分別為A,B,C(A,B,C均不與O重合).
(1)求證:$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)當$ϕ=\frac{π}{12}$時,B,C兩點在曲線C1上,求m與α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,若$\frac{S_n}{T_n}=\frac{38n+14}{2n+1}({n∈{N_+}})$,則$\frac{a_6}{b_7}$=( 。
A.16B.$\frac{242}{15}$C.$\frac{432}{23}$D.$\frac{494}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.F是拋物線x2=2y的焦點,A、B是拋物線上的兩點,|AF|+|BF|=6,則線段AB的中點到x軸的距離為2.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn(n∈N*),且滿足an+Sn=2n+1.
(1)求數(shù)列{an}的通項公式;
(2)求證:$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C1:x2+(y-$\frac{1}{4}$)2=1(y≥$\frac{1}{4}$),C2:x2=8y-1(|x|≥1),動直線l與C2相交于A,B兩點,曲線C2在A,B處的切線相交于點M.
(1)當MA⊥MB時,求證:直線l恒過定點,并求出定點坐標;
(2)若直線l與C1相切于點P,試問:在y軸上是否存在兩個定點T1,T2,當直線MT1,MT2斜率存在時,兩直線的斜率之積恒為定值?若存在求出滿足條件的點T1,T2的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.“-3<a<1”是“方程 $\frac{x^2}{a+3}+\frac{y^2}{1-a}=1$表示橢圓”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.等比數(shù)列{an}的前n項和為Sn,若a3=4,S3=12,則公比為1或$-\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案