【題目】過點C(3,4)且與軸,軸都相切的兩個圓的半徑分別為,則=______

【答案】25

【解析】

滿足與x軸,y軸都相切的圓的圓心在第一象限,設(shè)出圓心(a,a),根據(jù)切線的性質(zhì)得到半徑r=a,表示出圓的標(biāo)準(zhǔn)方程,由C在此圓上,將C的坐標(biāo)代入圓的方程中得到關(guān)于a的一元二次方程,根據(jù)r1,r2為此一元二次方程的兩個解,利用根與系數(shù)的關(guān)系即可得出r1r2的值.

由題意得:滿足與x軸,y軸都相切的圓的圓心在第一象限,設(shè)圓心坐標(biāo)為(a,a),則半徑r=a,∴圓的方程為(x﹣a)2+(y﹣a)2=a2,C(3,4)在此圓上,

C的坐標(biāo)代入得:(3﹣a)2+(4﹣a)2=a2整理得:a2﹣14a+25=0,

∵r1,r2分別為a2﹣14a+25=0的兩個解,∴r1r2=25.

故答案為:25

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,平面,,點分別為中點.

(1)求證:直線平面

(2)求證:;

(3)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓學(xué)生更多的了解數(shù)學(xué)史知識,梁才學(xué)校高二年級舉辦了一次追尋先哲的足跡,傾聽數(shù)學(xué)的聲音的數(shù)學(xué)史知識競賽活動,共有800名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,統(tǒng)計結(jié)果見下表.請你根據(jù)頻率分布表解答下列問題:

序號

分組

組中值

頻數(shù)

頻率

i

(分數(shù))

Gi

(人數(shù))

Fi

1

65

0.12

2

75

20

3

85

0.24

4

95

合計

50

1

(1)填充頻率分布表中的空格;

(2)為鼓勵更多的學(xué)生了解數(shù)學(xué)史知識,成績不低于85分的同學(xué)能獲獎,請估計在

參加的800名學(xué)生中大概有多少名學(xué)生獲獎?(3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點恰好是拋物線y= x2的焦點,離心率等于
(1)求橢圓C的方程;
(2)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若 1 ,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求與雙曲線有相同的焦點且過點的雙曲線標(biāo)準(zhǔn)方程;

(2)求焦點在直線上的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進入冬季以來,我國北方地區(qū)的霧霾天氣持續(xù)出現(xiàn),極大的影響了人們的健康和出行,我市環(huán)保局對該市2015年進行為期一年的空氣質(zhì)量監(jiān)測,得到每天的空氣質(zhì)量指數(shù),從中隨機抽取50個作為樣本進行分析報告,樣本數(shù)據(jù)分組區(qū)間為(5,15],(15,25],(25,35],(35,45],由此得到樣本的空氣質(zhì)量指數(shù)頻率分布直方圖,如圖.

(1)求a的值;
(2)如果空氣質(zhì)量指數(shù)不超過15,就認定空氣質(zhì)量為“特優(yōu)等級”,則從今年的監(jiān)測數(shù)據(jù)中隨機抽取3天的數(shù)值,其中達到“特優(yōu)等級”的天數(shù)為X.求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax,其中e為自然對數(shù)的底數(shù),a為常數(shù).
(1)若對函數(shù)f(x)存在極小值,且極小值為0,求a的值;
(2)若對任意x∈[0, ],不等式f(x)≥ex(1﹣sinx)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,其焦點與雙曲線的焦點重合,且橢圓的短軸的兩個端點與其一個焦點構(gòu)成正三角形.

(1)求橢圓的方程;

(2)過雙曲線的右頂點作直線與橢圓交于不同的兩點.

①設(shè),當(dāng)為定值時,求的值;

②設(shè)點是橢圓上的一點,滿足,記的面積為的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的極值;
(2)若存在實數(shù)x0∈(﹣1,0),且 ,使得 ,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案