設(shè)函數(shù)f(x)=
lnx
x
,則(  )
分析:利用導(dǎo)數(shù)工具去解決該函數(shù)極值的求解問題,關(guān)鍵要利用導(dǎo)數(shù)將原函數(shù)的單調(diào)區(qū)間找出來,即可確定出在哪個點處取得極值,進而得到答案.
解答:解:由f(x)=
lnx
x
,可得:f′(x)=
1-lnx
x2

f′(x)=
1-lnx
x2
>0,則0<x<e,
所以函數(shù)f(x)=
lnx
x
在(0,e)上遞增,在(e,+∞)上遞減,
所以當(dāng)x=e時,函數(shù)有極大值
故答案為 A.
點評:利用導(dǎo)數(shù)工具求該函數(shù)的極值是解決該題的關(guān)鍵,要先確定出導(dǎo)函數(shù)大于0時的實數(shù)x的范圍,再討論出函數(shù)的單調(diào)區(qū)間,根據(jù)極值的判斷方法求出該函數(shù)的極值,體現(xiàn)了導(dǎo)數(shù)的工具作用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時,f(x)>0.
(Ⅱ)從編號1到100的100張卡片中每次隨機抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽到的20個號碼互不相同的概率為p,證明:p<(
9
10
)19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x-1)+
2a
x
(a∈R)

(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果當(dāng)x>1,且x≠2時,
ln(x-1)
x-2
a
x
恒成立,則求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+1)-
2x
的零點為x0,若x0∈(k,k+1),k為整數(shù),則k的值等于
-1或1
-1或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)設(shè)函數(shù)f(x)=ln(x+a)-x2
(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).
(2)若f(x)在區(qū)間[1,2]上為減函數(shù),求a的取值范圍.
(3)若直線y=x為函數(shù)f(x)的圖象的一條切線,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln,則函數(shù)f()+f()的定義域為_______.

查看答案和解析>>

同步練習(xí)冊答案