設(shè)函數(shù)
(1)求導數(shù); 并證明有兩個不同的極值點;
(2)若不等式成立,求的取值范圍.
(1)(2)≥2。
(1)

因此是極大值點,是極小值點.
(II)因

又由(I)知
代入前面不等式,兩邊除以(1+a),并化簡得
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知在函數(shù)的圖象上以N(1,n)為切點的切線的傾斜角為
(Ⅰ)求m、n的值;
(Ⅱ)是否存在最小的正整數(shù)k,使得不等式恒成立?如果存在,請求出最小的正整數(shù)k;如果不存在,請說明理由;
(Ⅲ)(文科不做)求證: 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),且函數(shù)的圖象關(guān)于原點對稱,其圖象在處的切線方程為 (1)求的解析式;  (2)是否存在區(qū)間使得函數(shù)的定義域和值域均為,且其解析式為f(x)的解析式?若存在,求出這樣的一個區(qū)間[m,n];若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
   (1)當a=1時,試求函數(shù)的單調(diào)區(qū)間,并證明此時方程=0只有一個實數(shù)根,并求出此實數(shù)根;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知命題函數(shù)有極值;命題函數(shù)恒成立.若為真命題,為真命題,則的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在R上可導函數(shù)時取得極大值。當時取得極小值,則的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)若是函數(shù)的一個極值點,求實數(shù)的值;
(Ⅱ)設(shè),當時,函數(shù)的圖象恒不在直線上方,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(I)(i)求函數(shù)的圖象的交點A的坐標;
(ii)設(shè)函數(shù)的圖象在交點A處的切線分別為是否存在這樣的實數(shù)a,使得?若存在,請求出a的值和相應的點A坐標;若不存在,請說明理由。
(II)記上最小值為F(a),求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,
(I)若,求函數(shù)在區(qū)間的最大值與最小值;
(II)若函數(shù)在區(qū)間上都是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案