2.設(shè)全集U={-3,-2,-1,0,1,2,3},集合A={x∈Z|x2-2x-3≤0},則∁UA=( 。
A.{-3,-2}B.{2,3}C.(-3,-2)D.(2,3)

分析 求出A中的解集確定出A,根據(jù)全集U求出A的補集即可.

解答 解:全集U={-3,-2,-1,0,1,2,3},
集合A={x∈Z|x2-2x-3≤0}={-1,0,1,2,3},
所以CUA={-3.-2}.
故選:A

點評 本題考查了補集及其運算,解答時理解補集概念,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若$cosB=\frac{4}{5}$,$cosC=\frac{5}{13}$,c=4,則a=$\frac{21}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)為增函數(shù),當(dāng)x1+x2=1時,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,則實數(shù)x1的取值范圍是(  )
A.(-∞,0)B.$(0,\frac{1}{2})$C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x-1<0},B={x∈N|x<4},則(∁RA)∩B=(  )
A.{0}B.{1,2,3}C.{1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)x∈[0,1]時,f(x)=2x-1,則( 。
A.$f(6)<f(-7)<f(\frac{11}{2})$B.$f(6)<f(\frac{11}{2})<f(-7)$C.$f(-7)<f(\frac{11}{2})<f(6)$D.$f(\frac{11}{2})<f(-7)<f(6)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱錐P-ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中點,E,F(xiàn)分別為PD,PC的中點.
(Ⅰ)求證:AE⊥平面PCD;
(Ⅱ)求二面角B-PA-C的余弦值;
(Ⅲ)在棱PB上是否存在點M,使得CM∥平面AEF?若存在,求$\frac{PM}{PB}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,右焦點為F,點B(0,1)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點$(1,\frac{2}{k}]$的直線交橢圓C于M,N兩點,交直線x=2于點P,設(shè)$\overrightarrow{PM}=λ\overrightarrow{MF}$,$\overrightarrow{PN}=μ\overrightarrow{NF}$,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.tan330°=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長度是2,則圓M與圓N:(x-1)2+(y-1)2=1的位置關(guān)系是( 。
A.內(nèi)切B.相交C.外切D.相離

查看答案和解析>>

同步練習(xí)冊答案