分析 (Ⅰ)由題意b=1,利用橢圓的離心率即可求得a的值,求得橢圓方程;
(Ⅱ)設(shè)直線MN的方程為y=k(x-1),代入橢圓方程,利用韋達(dá)定理及向量的坐標(biāo)運算,即可證明λ+μ=0為定值.
解答 解:(Ⅰ)由點B(0,1)在橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上,則$\frac{1}{b^2}=1$,即b=1.
又橢圓C的離心率為$\frac{\sqrt{2}}{2}$,則$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,
由a2=b2+c2,得$a=\sqrt{2}$.
∴橢圓C的方程為$\frac{x^2}{2}+{y^2}=1$…(5分)
(Ⅱ)證明:由已知得F(1,0),直線MN的斜率存在.
設(shè)直線MN的方程為y=k(x-1),M(x1,y1),N(x2,y2),則P(2,k).
由$\overrightarrow{PM}=λ\overrightarrow{MF}$,$\overrightarrow{PN}=μ\overrightarrow{NF}$,得$λ=\frac{{2-{x_1}}}{{{x_1}-1}},μ=\frac{{2-{x_2}}}{{{x_2}-1}}$,
∴$λ+μ=\frac{{2-{x_1}}}{{{x_1}-1}}+\frac{{2-{x_2}}}{{{x_2}-1}}=\frac{{3({x_1}+{x_2})-2{x_1}{x_2}-4}}{{{x_1}{x_2}-({x_1}+{x_2})+1}}$,.
聯(lián)立$\left\{{\begin{array}{l}{y=k(x-1)}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$得(1+2k2)x2-4k2x+2k2-2=0.
∴${x_1}+{x_2}=\frac{{4{k^2}}}{{1+2{k^2}}}$,${x_1}{x_2}=\frac{{2{k^2}-2}}{{1+2{k^2}}}$.
∴$3({x_1}+{x_2})-2{x_1}{x_2}-4=3×\frac{{4{k^2}}}{{1+2{k^2}}}-2×\frac{{2{k^2}-2}}{{1+2{k^2}}}-4$=$\frac{{12{k^2}-4{k^2}+4-4-8{k^2}}}{{1+2{k^2}}}$=0,
∴λ+μ=0為定值…(14分)
點評 本題考查橢圓方程的求法,直線與橢圓的位置關(guān)系,考查韋達(dá)定理,向量數(shù)量積的坐標(biāo)運算,解題時要認(rèn)真審題,注意函數(shù)與方程思想的合理運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-3,-2} | B. | {2,3} | C. | (-3,-2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\sqrt{3}x$ | B. | $y=-\sqrt{3}x$ | C. | y=2x | D. | y=-2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
使用年限x | 2 | 3 | 4 | 5 | 6 |
總費用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com