12.已知曲線x2+y2=2(x≥0,y≥0)和x+y=$\sqrt{2}$圍成的封閉圖形為Г,則圖形Г繞y軸旋轉(zhuǎn)一周后所形成幾何體的表面積為(  )
A.$\frac{2\sqrt{2}}{3}$B.(8+4$\sqrt{2}$)πC.(8+2$\sqrt{2}$)πD.(4+2$\sqrt{2}$)π

分析 由圖象可知旋轉(zhuǎn)形成的幾何體的表面積由兩個部分組成,分別求出S1及S2,求和可得

解答 解:由圖象可知旋轉(zhuǎn)形成的幾何體的表面積由兩個部分組成,第一部分為半圓的表面積為S1=2πR2,R=$\sqrt{2}$,
∴S1=4π
S2旋轉(zhuǎn)所圍成的圖形為圓錐,其表面積為S2=πRl,R=$\sqrt{2}$,l=2
S2=2$\sqrt{2}$π,
故S=(4+2$\sqrt{2}$)π
故答案為D

點(diǎn)評 本題主要考察旋轉(zhuǎn)頭所圍成的圖形的表面積,要分兩步,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=$\left\{\begin{array}{l}{x+1,x<0}\\{1,0≤x<2}\\{x-1,x≥2}\end{array}\right.$
(1)試確定函數(shù)f(x)的定義域;
(2)求f(-2),f(0),f(1.5),f(3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式|x-3|<5的解集是(-2,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=lnx-ax2,且函數(shù)f(x)在點(diǎn)(2,f(2))處的切線的斜率是$-\frac{3}{2}$,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點(diǎn)(4,0),且其漸近線與圓(x-2)2+y2=3相切,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.從某山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中隨機(jī)抽取5頭,測量豬的體長x(cm)和體重y(kg),得如下測量數(shù)據(jù):
豬編號12345
x169181166185180
y9510097103101
(1)當(dāng)且僅當(dāng)x,y滿足:x≥180且y≥100時,該豬為優(yōu)等品,用上述樣本數(shù)據(jù)估計山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中優(yōu)等品的數(shù)量;
(2)從抽取的上述5頭豬中,隨機(jī)抽取2頭中優(yōu)等品數(shù)x的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.過點(diǎn)P(1,0)作拋物線y=$\sqrt{x-2}$的切線,求該切線與拋物線y=$\sqrt{x-2}$及x軸所圍平面圖形繞x軸旋轉(zhuǎn)而成的旋轉(zhuǎn)體體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(0,1),且離心率e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l與橢圓C交于A(x1,y1),B(x2,y2)兩點(diǎn),且△OAB的面積為S=1,其中O為坐標(biāo)原點(diǎn),求x${\;}_{1}^{2}$+x${\;}_{2}^{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪70元,每單抽成2元; 乙公司無底薪,40單以內(nèi)(含 40 單)的部分每單抽成4元,超出 40 單的部分每單抽成6元.假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) 3839404142
天數(shù)2040201010
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) 3839404142
天數(shù)1020204010
(Ⅰ)現(xiàn)從甲公司記錄的這100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答以下問題:
(。┯浺夜舅筒蛦T日工資X(單位:元),求X的分布列和數(shù)學(xué)期望;
(ⅱ)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案