已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當時,求的極值;
(Ⅱ)當a>0時,討論的單調(diào)性;
(Ⅲ)若對任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實數(shù)m的取值范圍。

(Ⅰ)的極大值為,無極小值;(Ⅱ)①當時,上是增函數(shù),在上是減函數(shù);②當時,上是增函數(shù);③當時,上是增函數(shù),在上是減函數(shù) ; (Ⅲ)

解析試題分析:(Ⅰ)當時,求的極值,首先確定函數(shù)的定義域為,對函數(shù)求導函數(shù),確定函數(shù)的單調(diào)性,即可求得函數(shù)的極值;(Ⅱ)當a>0時,討論的單調(diào)性,首先對函數(shù)求導函數(shù),并分解得,再進行分類討論,利用,確定函數(shù)單調(diào)減區(qū)間;,確定函數(shù)的單調(diào)增區(qū)間;(Ⅲ)若對任意的a∈(2, 3),x­1, x2∈[1, 3],恒有成立,只要求出的最大值即可,因此確定函數(shù)上單調(diào)遞減,可得的最大值與最小值,從而得,進而利用分離參數(shù)法,可得,從而可求實數(shù)的取值范圍
試題解析:(Ⅰ)當時,    2分
,解得 ,可知上是增函數(shù),在上是減函數(shù)     4分
的極大值為,無極小值                    5分
(Ⅱ)
①當時,上是增函數(shù),在上是減函數(shù);   7分
②當時,上是增函數(shù);                      8分
③當時,上是增函數(shù),在上是減函數(shù)  9分
(Ⅲ)當時,由(2)可知上是增函數(shù),
               10分
對任意的a∈(2, 3),x­1, x2∈[1, 3]恒成立,
                        11分
對任意恒成立,
對任意恒成立,                         12分
由于當時,,∴            14分
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值;利用導數(shù)研究函數(shù)的單調(diào)性;函數(shù)在某點取得極值的條件

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

,函數(shù)
(1)當時,求內(nèi)的極大值;
(2)設函數(shù),當有兩個極值點時,總有,求實數(shù)的值.(其中的導函數(shù).)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)).
(1)求函數(shù)上的單調(diào)區(qū)間;
(2)設函數(shù),是否存在區(qū)間,使得當時函數(shù)的值域為,若存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

。
(Ⅰ)求的極值點;
(Ⅱ)當時,若方程上有兩個實數(shù)解,求實數(shù)t的取值范圍;
(Ⅲ)證明:當時,。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中
(Ⅰ)若是函數(shù)的極值點,求實數(shù)的值;
(Ⅱ)若對任意的為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),f '(x)為f(x)的導函數(shù),若f '(x)是偶函數(shù)且f '(1)=0.
⑴求函數(shù)的解析式;
⑵若對于區(qū)間上任意兩個自變量的值,都有,求實數(shù)的最小值;
⑶若過點,可作曲線的三條切線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(其中,e是自然對數(shù)的底數(shù)).
(Ⅰ)若,試判斷函數(shù)在區(qū)間上的單調(diào)性;
(Ⅱ)若函數(shù)有兩個極值點),求k的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,試證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)當時,求曲線處的切線方程;
(2)當時,求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設函數(shù),若對于 [1,2], [0,1],使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖像在點處的切線方程為.
(I)求實數(shù)的值;
(Ⅱ)當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案