已知函數(shù),f '(x)為f(x)的導(dǎo)函數(shù),若f '(x)是偶函數(shù)且f '(1)=0.
⑴求函數(shù)的解析式;
⑵若對于區(qū)間上任意兩個(gè)自變量的值,都有,求實(shí)數(shù)的最小值;
⑶若過點(diǎn),可作曲線的三條切線,求實(shí)數(shù)的取值范圍.
⑴;⑵的最小值為;⑶.
解析試題分析:⑴,由是偶函數(shù)得.又,所以,由此可得解析式;
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn) 處的切線斜率為.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知,函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(14分)己知函數(shù)f (x)=ex,xR
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分12分)已知函數(shù),.
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù)。
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
⑵對于區(qū)間上任意兩個(gè)自變量的值,都有,則只需即可.所以接下來就利用導(dǎo)數(shù)求在區(qū)間上的最大值與最小值,然后代入解不等式即可得的最小值.⑶易知點(diǎn)不在曲線上.凡是過某點(diǎn)的切線(不是在某點(diǎn)處的切線)的問題,都要設(shè)出切點(diǎn)坐標(biāo)然后列方程組..
設(shè)切點(diǎn)為.則.又,∴切線的斜率為.
由此得,即.下面就考查這個(gè)方程的解的個(gè)數(shù).
因?yàn)檫^點(diǎn),可作曲線的三條切線,所以方程有三個(gè)不同的實(shí)數(shù)解.即函數(shù)有三個(gè)不同的零點(diǎn).接下來就利用導(dǎo)數(shù)結(jié)合圖象研究這個(gè)函數(shù)的零點(diǎn)的個(gè)數(shù).
試題解析:⑴∵,1分
由是偶函數(shù)得.又,所以3分
∴.4分
⑵令,即,解得.5分
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)求實(shí)數(shù)的值;
(2) 求函數(shù)在區(qū)間上的最小值;
(Ⅲ)若函數(shù)的圖像上存在兩點(diǎn),使得對于任意給定的正實(shí)數(shù)都滿足是以為直角頂點(diǎn)的直角三角形,且三角形斜邊中點(diǎn)在軸上,求點(diǎn)的橫坐標(biāo)的取值范圍.
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)有兩個(gè)極值點(diǎn)(設(shè)為和)時(shí),求證:.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若,恒成立,求實(shí)數(shù)的最小值;
(3)證明.
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)a>0時(shí),討論的單調(diào)性;
(Ⅲ)若對任意的a∈(2,3),x1,x2∈[1,3],恒有成立,求實(shí)數(shù)m的取值范圍。
(1)求 f (x)的反函數(shù)圖象上點(diǎn)(1,0)處的切線方程。
(2)證明:曲線y=f(x)與曲線y=有唯一公共點(diǎn);
(3)設(shè),比較與的大小,并說明理由。
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)若恒成立,求實(shí)數(shù)的值.
(Ⅰ)若時(shí),函數(shù)取得極值,求函數(shù)的圖像在處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)不單調(diào),求實(shí)數(shù)的取值范圍。
(I)求函數(shù)的解析式;
(II)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及函數(shù)取得極值時(shí)對應(yīng)的自變量的值.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)