已知函數(shù)y=y=Asin(ωx+φ)+m的最大值為4,最小值為0,最小正周期為,直線是其圖象的一條對(duì)稱(chēng)軸,則符合條件的函數(shù)解析式可以是
[     ]
A.y=4sin(4x+
B.y=2sin(4x+)+2
C.y=sin(2x+)+2
D.y=2sin(4x+)+2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<
π
2
)
的圖象,它與y軸的交點(diǎn)為(0,
3
2
),它在y軸右側(cè)的第一個(gè)最大值點(diǎn)和最小值點(diǎn)分別為(x0,3),(x0+2π,-3).
(1)求函數(shù)y=f(x)的解析式;
(2)求這個(gè)函數(shù)的單調(diào)遞增區(qū)間和對(duì)稱(chēng)中心.
(3)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asin(2x-
π
6
)+b

(1)若x∈[0,
π
2
]
時(shí)f(x)的值域?yàn)閇4,10],求a×b的值;
(2)若a=1,求函數(shù)y=f(-x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
6
)
(其中x∈R,A>0,ω>0)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為
π
2
,且圖象上一個(gè)點(diǎn)為M(
3
,-2)

(1)求f(x)的解析式;
(2)若x∈[0,
π
4
]
求函數(shù)f(x)的值域;
(3)將函數(shù)y=f(x)的圖象向左平移
π
2
個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變,求經(jīng)以上變換后得到的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+?)+B(A>0,0<ω<2,|?|<
π
2
)
的一系列對(duì)應(yīng)值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(Ⅰ)根據(jù)表格提供的數(shù)據(jù)求函數(shù)y=f(x)的解析式;
(Ⅱ)求當(dāng)x∈[0,
π
3
]
時(shí),y=f(3x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•汕頭二模)已知函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,|φ|<
π
2
)
的圖象與y軸交于(0,3
2
)
,它在y右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(m,6)和(m+
π
2
,-6)

(1)求函數(shù)f(x)的解析式及m的值;
(2)若銳角θ滿(mǎn)足tanθ=2
2
,求f(θ).

查看答案和解析>>

同步練習(xí)冊(cè)答案