直線l:y=k(x+2)+4與曲線C:y=1+
4-x2
有兩個交點(diǎn),則k的取值范圍
 
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:根據(jù)直線過定點(diǎn),以及直線和圓的位置關(guān)系即可得到結(jié)論.利用數(shù)形結(jié)合作出圖象進(jìn)行研究即可.
解答: 解:由y=k(x+2)+4知直線l過定點(diǎn)G(-2,4),由y=1+
4-x2
,得y-1=
4-x2
,兩邊平方得x2+(y-1)2=4,
則曲線是以(0,1)為圓心,2為半徑,且位于直線y=1上方的半圓.
當(dāng)直線過點(diǎn)A(2,1)時,直線l與曲線有兩個不同的交點(diǎn),
此時4k+4=1,
解得k=-
3
4
,
當(dāng)直線l與曲線相切時,直線和圓有一個交點(diǎn),
圓心(0,1)到直線kx-y+4+2k=0的距離d=
|2k+3|
1+k2
=2,
平方得k=-
5
12
,
要使直線y=kx+4+2k與曲線y=1+
4-x2
有兩個交點(diǎn),
則直線l夾在兩條直線之間,
因此-
3
4
≤k<-
5
12

故答案為:-
3
4
≤k<-
5
12
點(diǎn)評:本題主要考查直線和圓的位置關(guān)系的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,考查學(xué)生的計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖,其作用是輸入x的值,輸出相應(yīng)的y的值.
(1)請指出該程序框圖所使用的邏輯結(jié)構(gòu);
(2)若要使輸入的x的值與輸出的y的值相等,則輸入x的值的集合為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={3,6,7,8},N={3,4,5},從M和N中各自任取一個數(shù),分別記為x和為y,求x+y≥11的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知底面邊長為1,側(cè)棱長為ABCD的正四棱柱的各頂點(diǎn)均在同一個球面上,則該球的體積為( 。
A、
32
3
π
B、4π
C、
3
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
25
=1的焦點(diǎn)坐標(biāo)為( 。
A、(-3,0),(3,0)
B、(-4,0),(4,0)
C、(0,-4),(0,4)
D、(0,-3),(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在山頂鐵塔上B處測得一點(diǎn)鐵A的俯角為α,在塔底C處測得A處的俯角為β,若鐵塔高為m米,則山高CD為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(1,2),
b
=(-2,m),且
a
b
,則m=( 。
A、1B、4C、-4D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-k)2e
x
k
,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為2的圓中,弧度數(shù)為
π
3
的圓心角所對的弧長為
 

查看答案和解析>>

同步練習(xí)冊答案