(2010•臺州一模)數(shù)列1,
1
1+2
,
1
1+2+3
,
1
1+2+3+4
,…,
1
1+2+3+…n
,…的前n項和為( 。
分析:
1
1+2+3+…+n
=
2
n(n+1)
=2(
1
n
-
1
n+1
)
,利用“裂項求和”即可得出:數(shù)列1,
1
1+2
1
1+2+3
,
1
1+2+3+4
,…,
1
1+2+3+…n
,…的前n項和.
解答:解:∵
1
1+2+3+…+n
=
2
n(n+1)
=2(
1
n
-
1
n+1
)
,
∴數(shù)列1,
1
1+2
,
1
1+2+3
,
1
1+2+3+4
,…,
1
1+2+3+…n
,…的前n項和=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=2(1-
1
n+1
)
=
2n
n+1

故選B.
點(diǎn)評:熟練掌握“裂項求和”是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•臺州一模)已知集合A={x|x<3} B={1,2,3,4},則(?RA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•臺州一模)設(shè)m為直線,α,β,γ為三個不同的平面,下列命題正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•臺州一模)在實(shí)數(shù)等比數(shù)列{an}中,a2+a6=34,a3a5=64,則a4=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•臺州一模)設(shè)F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),已知點(diǎn)P(
a2
c
,
3
b
)(其中c為橢圓的半焦距),若線段PF1的中垂線恰好過點(diǎn)F2,則橢圓離心率的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•臺州一模)某電子科技公司遇到一個技術(shù)性難題,決定成立甲、乙兩個攻關(guān)小組,按要求各自獨(dú)立進(jìn)行為期一個月的技術(shù)攻關(guān),同時決定對攻關(guān)限期內(nèi)攻克技術(shù)難題的小組給予獎勵.已知此技術(shù)難題在攻關(guān)期限內(nèi)被甲小組攻克的概率為
2
3
,被乙小組攻克的概率為
3
4

(1)設(shè)ξ為攻關(guān)期滿時獲獎的攻關(guān)小組數(shù),求ξ的分布列及數(shù)學(xué)期望Eξ;
(2)設(shè)η為攻關(guān)期滿時獲獎的攻關(guān)小組數(shù)與沒有獲獎的攻關(guān)小組數(shù)之差的平方,記“函數(shù)f(x)=|η-
1
2
|x
在定義域內(nèi)單調(diào)遞增”為事件C,求事件C發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊答案