已知斜率為2的直線l過拋物線y2=ax(a>0)的焦點(diǎn)F,且與y軸相交于點(diǎn)A,若△OAF(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線方程為________.
y2=8x
依題意得,OF=,又直線l的斜率為2,可知AO=2OF=,△AOF的面積等于·AO·OF==4,則a2=64.又a>0,所以a=8,該拋物線的方程是y2=8x.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知拋物線過點(diǎn),直線,兩點(diǎn),過點(diǎn)且平行于軸的直線分別與直線軸相交于點(diǎn)

(1)求的值;
(2)是否存在定點(diǎn),當(dāng)直線過點(diǎn)時(shí),△與△的面積相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)到雙曲線的漸近線的距離是(   )
A.
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點(diǎn)F作直線AB,CD與拋物線交于A、B、C、D四點(diǎn),且,則的最大等于 (    )
A.-4
B.-16
C.4
D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求滿足下列條件的拋物線的標(biāo)準(zhǔn)方程,并求對(duì)應(yīng)拋物線的準(zhǔn)線方程.
(1)過點(diǎn)(-3,2);
(2)焦點(diǎn)在直線x-2y-4=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個(gè)點(diǎn)到準(zhǔn)線x=-2的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時(shí)與直線l1:y=x和l2:y=-x相切的圓,
(1)求定點(diǎn)N的坐標(biāo);
(2)是否存在一條直線l同時(shí)滿足下列條件:
①l分別與直線l1和l2交于A、B兩點(diǎn),且AB中點(diǎn)為E(4,1);
②l被圓N截得的弦長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線,過原點(diǎn)的動(dòng)直線交拋物線、兩點(diǎn),的中點(diǎn),設(shè)動(dòng)點(diǎn),則的最大值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)動(dòng)點(diǎn)P(x,y)(x≥0)到定點(diǎn)F的距離比到y(tǒng)軸的距離大.記點(diǎn)P的軌跡為曲線C.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M在y軸上截得的弦,當(dāng)M運(yùn)動(dòng)時(shí)弦長(zhǎng)BD是否為定值?說明理由;
(3)過F作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形GRHS面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=x-3與拋物線y2=4x交于A,B兩點(diǎn),過A,B兩點(diǎn)向拋物線的準(zhǔn)線作垂線,垂足分別為P,Q,則梯形APQB的面積為(  )
A.48B.56C.64D.72

查看答案和解析>>

同步練習(xí)冊(cè)答案