【題目】設(shè)數(shù)列的前項(xiàng)和為,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足:
對于任意,都有成立.
①求數(shù)列的通項(xiàng)公式;
②設(shè)數(shù)列,問:數(shù)列中是否存在三項(xiàng),使得它們構(gòu)成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請說明理由.
【答案】(1),.(2)①,.②見解析.
【解析】分析:(1)當(dāng)時(shí),類比寫出,兩式相減整理得,當(dāng)時(shí),求得,從而求得數(shù)列的通項(xiàng)公式.;
(2)①將代入已知條件,用與(1)相似的方法,變換求出數(shù)列的通項(xiàng)公式;
②由的通項(xiàng)公式分析,得…,假設(shè)存在三項(xiàng),,成等差數(shù)列,且,則,即,根據(jù)數(shù)列的單調(diào)性,化簡得,將或代入已知條件,即可得到結(jié)論.
詳解:解:(1)由, ①
得, ②
由①-②得,即
對①取得,,所以,所以為常數(shù),
所以為等比數(shù)列,首項(xiàng)為1,公比為,即,.
(2)①由,可得對于任意有
, ③
則, ④
則, ⑤
由③-⑤得,
對③取得,也適合上式,
因此,.
②由(1)(2)可知,
則,
所以當(dāng)時(shí),,即,
當(dāng)時(shí),,即在且上單調(diào)遞減,
故…,
假設(shè)存在三項(xiàng),,成等差數(shù)列,其中,,,
由于…,可不妨設(shè),則(*),
即,
因?yàn)?/span>,,且,則且,
由數(shù)列的單調(diào)性可知,,即,
因?yàn)?/span>,所以,
即,化簡得,
又且,所以或,
當(dāng)時(shí),,即,由時(shí),,此時(shí),,不構(gòu)成等差數(shù)列,不合題意,
當(dāng)時(shí),由題意或,即,又,代入(*)式得,
因?yàn)閿?shù)列在且上單調(diào)遞減,且,,所以,
綜上所述,數(shù)列中存在三項(xiàng),,或,,構(gòu)成等差數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的3個(gè)紅球和3個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球。
(1)求取出的4個(gè)球中沒有紅球的概率;
(2)求取出的4個(gè)球中恰有1個(gè)紅球的概率;
(3)設(shè)為取出的4個(gè)球中紅球的個(gè)數(shù),求的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面
(I)求證:;
(II)若M為中點(diǎn),求證:平面;
(III)在線段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),().
(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)am的值;
(2)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論;
(3)若對任意恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,長方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),于,于,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊,上.
(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;
(2)試確定點(diǎn)在上的位置,使得四邊形材料的面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:
根據(jù)該折線圖可知,下列說法錯(cuò)誤的是( )
A. 該超市2018年的12個(gè)月中的7月份的收益最高
B. 該超市2018年的12個(gè)月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)令函數(shù)是自然對數(shù)的底數(shù),若函數(shù)有且只有一個(gè)零點(diǎn),判斷與的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)強(qiáng)國活動中,某市圖書館的科技類圖書和時(shí)政類圖書是市民借閱的熱門圖書.為了豐富圖書資源,現(xiàn)對已借閱了科技類圖書的市民(以下簡稱為“問卷市民”)進(jìn)行隨機(jī)問卷調(diào)查,若不借閱時(shí)政類圖書記1分,若借閱時(shí)政類圖書記2分,每位市民選擇是否借閱時(shí)政類圖書的概率均為,市民之間選擇意愿相互獨(dú)立.
(1)從問卷市民中隨機(jī)抽取4人,記總得分為隨機(jī)變量,求的分布列和數(shù)學(xué)期望;
(2)(i)若從問卷市民中隨機(jī)抽取人,記總分恰為分的概率為,求數(shù)列的前10項(xiàng)和;
(ⅱ)在對所有問卷市民進(jìn)行隨機(jī)問卷調(diào)查過程中,記已調(diào)查過的累計(jì)得分恰為分的概率為(比如:表示累計(jì)得分為1分的概率,表示累計(jì)得分為2分的概率,),試探求與之間的關(guān)系,并求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱 ABC﹣A1B1C1 中,AB 1 ,若二面角 C AB C1 的大小為 60°,則點(diǎn) C 到平面 ABC1 的距離為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com