分析 (Ⅰ)由已知利用誘導公式能求出f(α)=cosα.
(Ⅱ)由α為第三象限角,利用誘導公式能求出sinα,再由同角三角函數(shù)關(guān)系式能求出f(α)的值.
解答 解:(Ⅰ)$f(α)=\frac{sin(π-α)cos(2π-α)tan(-α+π)}{tan(-α-π)sin(-π-α)}=\frac{sinαcosα(-tanα)}{-tanαsinα}=cosα$.(5分)
(Ⅱ)∵α為第三象限角,且$cos(α-\frac{3π}{2})=-sinα=\frac{{2\sqrt{6}}}{5}$,(7分)
$\begin{array}{l}∴sinα=-\frac{{2\sqrt{6}}}{5}\\∴cosα=-\sqrt{1-{{sin}^2}α}=-\frac{1}{5}\end{array}$.
∴$f(α)=cosα=-\frac{1}{5}$.(10分)
點評 本題考查三角函數(shù)化簡求值,是基礎(chǔ)題,解題時要認真審題,注意誘導公式的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | rl=r2 | B. | r1>r2>0 | C. | 0<r1<r2 | D. | r1<0<r2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關(guān)于點($\frac{π}{8}$,0)對稱 | B. | 關(guān)于直線x=$\frac{π}{8}$對稱 | ||
C. | 關(guān)于點(-$\frac{π}{4}$,0)對稱 | D. | 關(guān)于直線x=-$\frac{π}{4}$對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1+i}{2}$ | B. | $\frac{1-i}{2}$ | C. | $\frac{-1-i}{2}$ | D. | $\frac{-1+i}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com