已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過定點(diǎn),求的取值范圍.
(Ⅰ)(Ⅱ)
【解析】
試題分析:(Ⅰ)本小題通過告訴兩個條件.到焦點(diǎn)最長和最短的焦半徑,即可求得所求的橢圓方程.本小題的已知條件要記清不要混淆.(Ⅱ)本小題是直線與橢圓的關(guān)系,常用的方法就是聯(lián)立方程,判別式大于零,韋達(dá)定理.再根據(jù)弦MN的中垂線恒過一點(diǎn).根據(jù)中點(diǎn),定點(diǎn),斜率其中的兩個條件所以可以寫出垂直平分線的直線方程.再將另一個代入就可得到一個關(guān)于k,m的等式.再結(jié)合判別式得到不等式即可得到k的取值范圍.本題的運(yùn)算量較大些.要認(rèn)真做到“步步為贏”.
試題解析:(I)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為
,
4分
(Ⅱ)設(shè)
由
消去并整理得 6分
∵直線與橢圓有兩個交點(diǎn)
,即 8分
又
中點(diǎn)的坐標(biāo)為 10分
設(shè)的垂直平分線方程:
在上
即
12分
將上式代入得
即或
的取值范圍為 14分
考點(diǎn):1.待定系數(shù)求橢圓方程.2.直線與橢圓的方程.3.韋達(dá)定理4.不等式的解法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2
| ||
5 |
| ||
5 |
AC |
AO |
AC |
AO |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
x2 |
36 |
y2 |
9 |
x2 |
36 |
y2 |
9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
| ||
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com