【答案】
分析:(1)由于正方形ACDE所在的平面與平面ABC垂直,AC⊥BC,根據(jù)面面垂直的性質(zhì)可得BC⊥平面ACDE,過點A作BC的垂線,垂足為O,則AO即為點A到面EBC的距離,在正方形ABCD中,求得AO即可得出點A到面EBC的距離;
(2)連接BM,結(jié)合AM⊥平面EBC,說明∠ABM是直線AB與平面EBC所成的角,解三角形求異面直線AE和PB所成角的余弦值;
(3)過A作AH⊥EB于H,連接BM,先證得,∴∠AHM是二面角A-EB-C的平面角,再利用直角三角形中的邊角關(guān)系求出其正弦值即得.
解答:解:(1)∵正方形ACDE所在的平面與平面ABC垂直,AC⊥BC,
∴BC⊥平面ACDE,
過點A作BC的垂線,垂足為O,則AO即為點A到面EBC的距離,
在正方形ABCD中,求得AO=
即點A到面EBC的距離為:
(2)連接BM,∵AM⊥平面EBC,
∴∠ABM是直線AB與平面EBC所成的角.
設EA=AC=BC=2a,則AM=
,
,∴
,
∴∠ABM=30°,即直線AB與平面EBC所成的角為30°.
(3)過A作AH⊥EB于H,連接BM.∵AM⊥平面EBC,∴AM⊥EB.
∴EB⊥平面AHM,∴EB⊥HM,∴∠AHM是二面角A-EB-C的平面角.
∵平面ACDE⊥平面ABC,∴EA⊥平面ABC,∴EA⊥AB.
在Rt△EAB中,AH⊥EB,∴AE•AB=EB•AH.
由(2)所設EA=AC=BC=2a可得
,
,
∴
.
∴
.結(jié)合圖形得∠AHM=60°.即二面角A-EB-C的大小等于60°.
點評:本題考查異面直線及其所成的角、二面角等基礎知識,考查空間想象能力,邏輯思維能力,是中檔題,?碱}型.