已知點(diǎn)(4,2)是直線l被橢圓+=1所截的線段的中點(diǎn),則直線l的方程是( )
A.x-2y=0
B.x+2y-4=0
C.2x+3y+4=0
D.x+2y-8=0
【答案】分析:利用“點(diǎn)差法”即可得出直線l的斜率,利用點(diǎn)斜式即可得出方程.
解答:解:設(shè)直線l與橢圓相交于兩點(diǎn)A(x1,y1),B(x2,y2).
代入橢圓方程可得,
兩式相減得,
∵x1+x2=2×4=8,y1+y2=2×2=4,,
,解得kl=
∴直線l的方程是,
即x+2y-8=0.
故選D.
點(diǎn)評(píng):熟練掌握“點(diǎn)差法”是解決“中點(diǎn)弦”問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),AC=BC=2,AA1=4.
(Ⅰ)求證:CF⊥平面ABB1
(Ⅱ)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF∥平面AEB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點(diǎn)D在AB上.
(1)若D是AB中點(diǎn),求證:AC1∥平面B1CD;
(2)當(dāng)
BD
AB
=
1
5
時(shí),求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1
(II)求此幾何體的體積;
(Ⅲ)點(diǎn)F為AA1上一點(diǎn),若BF⊥平面COB1,求AF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直三棱柱ABC-A1B1C1的各棱長(zhǎng)均為1,棱BB1所在直線上的動(dòng)點(diǎn)M滿足
BM
BB1
,AM與側(cè)面BB1C1C所成的角為θ,若λ∈[
2
2
,
2
],則θ的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•渭南二模)如圖,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,E是棱CC1上的動(dòng)點(diǎn),F(xiàn)是AB的中點(diǎn),AC=BC=2,AA1=4.
(1)當(dāng)E是棱CC1的中點(diǎn)時(shí),求證:CF∥平面AEB1
(2)在棱CC1上是否存在點(diǎn)E,使得二面角A-EB1-B的大小是45°?若存在,求出CE的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案