A. | -$\frac{16}{65}$ | B. | $\frac{56}{65}$ | C. | $\frac{16}{65}$ | D. | -$\frac{56}{65}$ |
分析 α,β的范圍得出α-β的范圍,然后利用同角三角函數(shù)間的基本關(guān)系,由sin(α-β)和cosα的值,求出cos(α-β)和sinα的值,然后由β=α-(α-β),把所求的式子利用兩角差的余弦函數(shù)公式化簡后,將各自的值代入即可求出值.
解答 解:根據(jù)α,β∈(0,$\frac{π}{2}$),得到α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
由cosα=$\frac{3}{5}$,sin(α-β)=$\frac{5}{13}$,
所以cos(α-β)=$\sqrt{1-si{n}^{2}(α-β)}$=$\frac{12}{13}$,sinα=$\frac{4}{5}$,
則cosβ=cos[α-(α-β)]=cos(α-β)cosα+sin(α-β)sinα=$\frac{12}{13}×\frac{3}{5}$+$\frac{5}{13}×\frac{4}{5}$=$\frac{56}{65}$.
故選:B.
點評 此題考查學(xué)生靈活運用同角三角函數(shù)間的基本關(guān)系及兩角和與差的正弦函數(shù)公式化簡求值,是一道中檔題.做題時注意角度的變換.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 9 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2-1 | B. | y=x2+1 | C. | y=(x-1)2 | D. | y=(x+1)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com