2.多面體的三視圖如圖所示,則該多面體的表面積為$\frac{32}{3}$cm2

分析 如圖所示,由三視圖可知:該幾何體為三棱錐P-ABC.該幾何體可以看成是兩個底面均為△PCD,高分別為AD和BD的棱錐形成的組合體,進(jìn)而可得答案.

解答 解:如圖所示,
由三視圖可知:

該幾何體為三棱錐P-ABC.

該幾何體可以看成是兩個底面均為△PCD,高分別為AD和BD的棱錐形成的組合體,
由幾何體的俯視圖可得:△PCD的面積S=$\frac{1}{2}$×4×4=8cm2,
由幾何體的正視圖可得:AD+BD=AB=4cm,
故幾何體的體積V=$\frac{1}{3}$×8×4=$\frac{32}{3}$cm3,
故答案為:$\frac{32}{3}$.

點評 本題考查由三視圖求幾何體的體積和表面積,根據(jù)已知的三視圖分析出幾何體的形狀是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}滿足${a_1}=2,{a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}(n∈N*)$,則該數(shù)列的前2017項的乘積a1a2a3…a2017=( 。
A.2B.$\frac{1}{3}$C.-$\frac{1}{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足:f(x)+g(x)=ex,則(  )
A.$f(x)=\frac{{{e^x}+{e^{-x}}}}{2}$B.$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$C.$g(x)=\frac{{{e^x}-{e^{-x}}}}{2}$D.$g(x)=\frac{{{e^{-x}}-{e^x}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2ex
(1)求f(x)在(-∞,0)上的最大值;
(2)若函數(shù)f(x)在(-1,+∞)上的最小值為m,當(dāng)x>0時,試比較$m-\frac{1}{2}$與lnx-2x+1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)a>0,b>0,且ab=2a+b,則a+b的最小值為2$\sqrt{2}$+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1
(Ⅰ)求f(x)的周期和單調(diào)減區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{6},\frac{π}{4}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知全集U=R,集合A={x|x>2或x<1},B={x|x-a≤0},若∁UB⊆A,則實數(shù)a的取值范圍是( 。
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知α,β為銳角,且cosα=$\frac{3}{5}$,sin(α-β)=$\frac{5}{13}$,則cosβ=(  )
A.-$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$D.-$\frac{56}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓M:x2+y2-2ax=0(a<0)截直線x-y=0所得線段的長度是$2\sqrt{2}$,則圓M與圓N:(x-2)2+(y-1)2=9的位置關(guān)系是( 。
A.內(nèi)切B.相交C.外切D.相離

查看答案和解析>>

同步練習(xí)冊答案