【題目】給出下列四個(gè)命題:①若,則;②若,則;③若,則;④若, ,則的最小值為9;其中正確命題的序號(hào)是______(將你認(rèn)為正確的命題序號(hào)都填上).

【答案】②④

【解析】試題分析:根據(jù)a>b>0,得出>0,判斷錯(cuò)誤;由a>b>0,得出﹣>﹣,從而得出a﹣>b﹣,判斷正確;由a>b>0,得出<0,判斷錯(cuò)誤;根據(jù)題意,利用基本不等式得出≥9,判斷正確.

詳解:

對(duì)于,若a>b>0,則ab>0,∴>0,∴>0,①錯(cuò)誤;

對(duì)于,由知,若a>b>0,則,

∴﹣>﹣,∴,②正確;

對(duì)于,若a>b>0,則

,③錯(cuò)誤;

對(duì)于④,a>0,b>02a+b=1,則=()(a+b)=5+

當(dāng)且僅當(dāng)a=b=時(shí)取等號(hào),∴④正確.

故答案為:②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l:ax+ y﹣1=0與x,y軸的交點(diǎn)分別為A,B,直線l與圓O:x2+y2=1的交點(diǎn)為C,D.給出下列命題:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.則下面命題正確的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ab為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與ab都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:

當(dāng)直線ABa60°角時(shí),ABb30°角;

當(dāng)直線ABa60°角時(shí),ABb60°角;

直線ABa所成角的最小值為45°;

直線ABa所成角的最大值為60°.

其中正確的是________.(填寫所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知ABC的頂點(diǎn)A(2,0),B(0,4),若其歐拉線的方程為xy+2=0,則頂點(diǎn)C的坐標(biāo)是(  )

A. (-4,0) B. (0,-4) C. (4,0) D. (4,0)(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上。若右焦點(diǎn)F到直線xy+2=0的距離為3。

(1)求橢圓的方程;

(2)設(shè)直線ykxm(k≠0)與橢圓相交于不同的兩點(diǎn)M、N。當(dāng)|AM|=|AN|時(shí),求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是公差不為零的等差數(shù)列, 是等比數(shù)列,且,,.

(1)求數(shù)列,的通項(xiàng)公式;

(2)記,求數(shù)列的前項(xiàng)和;

(3)若滿足不等式成立的恰有個(gè),求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體為一簡(jiǎn)單組合體在底面,,,平面,,

(1)求證:平面平面;

(2)求該組合體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓經(jīng)過點(diǎn),離心率,直線的方程為.

求橢圓的方程;

是經(jīng)過右焦點(diǎn)的任一弦(不經(jīng)過點(diǎn)),設(shè)直線與直線相交于點(diǎn),記, , 的斜率為, .問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,上頂點(diǎn)到直線的距離為.

(1)求橢圓的方程;

(2)是否存在過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),線段的中點(diǎn)為,使得?若存在,求直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案