如圖曲線y=x2和直線x=0,x=1,y=所圍成的圖形(陰影部分)的面積為( )

A.
B.
C.
D.
【答案】分析:先聯(lián)立y=x2與y=的方程得到交點,繼而得到積分區(qū)間,再用定積分求出陰影部分面積即可.
解答:解:由于曲線y=x2(x>0)與y=的交點為(),
而曲線y=x2和直線x=0,x=1,y=所圍成的圖形(陰影部分)的面積為S=
所以圍成的圖形的面積為S===
故答案選D.
點評:本題考查了定積分在研究平面幾何中的應(yīng)用,主要是利用定積分求曲線圍成的圖形面積,關(guān)鍵是要找到正確的積分區(qū)間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一青蛙從點A0(x0,y0)開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是Ai(xi,yi)(i∈N*),(如圖所示,A0(x0,y0)坐標(biāo)以已知條件為準(zhǔn)),Sn表示青蛙從點A0到點An所經(jīng)過的路程.
(1)若點A0(x0,y0)為拋物線y2=2px(p>0)準(zhǔn)線上一點,點A1,A2均在該拋物線上,并且直線A1A2經(jīng)過該拋物線的焦點,證明S2=3p.
(2)若點An(xn,yn)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且A0(
1
2
,
1
2
)
,試寫出
lim
n→+∞
Sn
(不需證明);
(3)若點An(xn,yn)要么落在y=2
1+8x
-1
所表示的曲線上,要么落在y=2
1+8x
+1
所表示的曲線上,并且A0(0,4),求Sn的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市閔行區(qū)七寶中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

一青蛙從點A(x,y)開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是Ai(xi,yi)(i∈N*),(如圖所示,A(x,y)坐標(biāo)以已知條件為準(zhǔn)),Sn表示青蛙從點A到點An所經(jīng)過的路程.
(1)若點A(x,y)為拋物線y2=2px(p>0)準(zhǔn)線上一點,點A1,A2均在該拋物線上,并且直線A1A2經(jīng)過該拋物線的焦點,證明S2=3p.
(2)若點An(xn,yn)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且,試寫出(不需證明);
(3)若點An(xn,yn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且A(0,4),求Sn的表達式.

查看答案和解析>>

同步練習(xí)冊答案