(本小題滿分12分)如圖,棱柱ABCD—的底面為菱 形 ,AC∩BD=O側(cè)棱BD,點(diǎn)F的中點(diǎn).

(Ⅰ)證明:平面
(Ⅱ)證明:平面平面.

(1)對于線面平行的證明,一般要運(yùn)用線線平行來證明 ,根據(jù)題意可知,,可證明
(2)運(yùn)用,那么結(jié)合面面垂直的判定定理得到。

解析試題分析:證明:(Ⅰ)



 
(Ⅱ)



考點(diǎn):面面垂直,線面平行
點(diǎn)評:需要熟練的掌握面面垂直的判定定理和線面平行的判定定理的運(yùn)用,來求證,屬于常規(guī)試題,用心體會(huì)入手點(diǎn)是關(guān)鍵。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點(diǎn)。

(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點(diǎn),若EG//面ABCD.

(1)求證:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知:如圖,在四棱錐中,四邊形為正方形,,且,中點(diǎn).

(1)證明://平面
(2)證明:平面平面;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,

(1)線段的中點(diǎn)為,線段的中點(diǎn)為,求證:
(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知直三棱柱中,, ,若中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
四棱錐,面⊥面.側(cè)面是以為直角頂點(diǎn)的等腰直角三角形,底面為直角梯形,,,,上一點(diǎn),且.

(Ⅰ)求證;
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)三棱錐中,,,

(Ⅰ)求證:平面平面;
(Ⅱ)若,且異面直線的夾角為時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,,的中點(diǎn).

(1)求證:平行平面
(2)求二面角的余弦值;
(3)試問線段上是否存在點(diǎn),使角?若存在,確定點(diǎn)位置,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案