(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點,若EG//面ABCD.
(1)求證:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
(1)∵在正三角形ABC中,CMAB,又AFCM∴EGAB, EGAF,∴EG面ABF.
(2)
解析試題分析:(1)取AB的中點M,連結(jié)GM,MC,G為BF的中點,
所以GM //FA,又EC面ABCD, FA面ABCD,
∵CE//AF,
∴CE//GM,
∵面CEGM面ABCD=CM,
EG// 面ABCD,
∴EG//CM,
∵在正三角形ABC中,CMAB,又AFCM
∴EGAB, EGAF,
∴EG面ABF.
(2)建立如圖所示的坐標系,設AB=2,
則B()E(0,1,1) F(0,-1,2)
=(0,-2,1) , =(,-1,-1), =(,1, 1),
設平面BEF的法向量=()則
令,則,
∴=()
同理,可求平面DEF的法向量 =(-)
設所求二面角的平面角為,則
=.
考點:用空間向量求平面間的夾角;直線與平面垂直的判定;二面角的平面角及求法.
點評:本題考查線面垂直,考查面面角,正確運用線面垂直的判定,求出平面的法向量是解題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四邊形中,對角線于,,為的重心,過點的直線分別交于且‖,沿將折起,沿將折起,正好重合于.
(Ⅰ) 求證:平面平面;
(Ⅱ)求平面與平面夾角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知⊙所在的平面,AB是⊙的直徑,,是⊙上一點,且,分別為中點。
(1)求證:平面;
(2)求證:;
(3)求三棱錐-的體積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,棱柱ABCD—的底面為菱 形 ,AC∩BD=O側(cè)棱⊥BD,點F為的中點.
(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖1,在平行四邊形ABCD中,AB=1,BD=,∠ABD=90°,E是BD上的一個動點,現(xiàn)將該平行四邊形沿對角線BD折成直二面角A-BD-C,如圖2所示.
(1)若F、G分別是AD、BC的中點,且AB∥平面EFG,求證:CD∥平面EFG;
(2)當圖1中AE+EC最小時,求圖2中二面角A-EC-B的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com