分析 求出拋物線的焦點(diǎn)坐標(biāo)F(1,0),用點(diǎn)斜式設(shè)出直線方程:y=$\frac{\sqrt{3}}{3}$(x-1),與拋物線方程聯(lián)解得一個關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系結(jié)合曲線的弦長的公式,可以求出線段AB的長度.
解答 解:根據(jù)拋物線y2=4x方程得:焦點(diǎn)坐標(biāo)F(1,0),
直線AB的斜率為k=tan30°=$\frac{\sqrt{3}}{3}$,
由直線方程的點(diǎn)斜式方程,設(shè)AB:y=$\frac{\sqrt{3}}{3}$(x-1),
將直線方程代入到拋物線方程中,得:$\frac{1}{3}$(x-1)2=4x,
整理得:x2-14x+1=0,
設(shè)A(x1,y1),B(x2,y2),
由一元二次方程根與系數(shù)的關(guān)系得:x1+x2=14,x1•x2=1,所以弦長|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+\frac{1}{3}}$•$\sqrt{192}$=16.
故答案為:16.
點(diǎn)評 本題以拋物線為載體,考查了圓錐曲線的弦長問題,屬于中檔題.本題運(yùn)用了直線方程與拋物線方程聯(lián)解的方法,對運(yùn)算的要求較高.利用一元二次方程根與系數(shù)的關(guān)系和弦長公式是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=2kπ-\frac{π}{2}$,k∈Z | B. | $x=2kπ+\frac{π}{2}$,k∈Z | C. | x=2kπ,k∈Z | D. | x=2kπ+π,k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com