6.已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,與x軸交于A、B兩點,與y軸交于P點,其一條對稱軸與x軸交于C點,且PA=PC=2$\sqrt{3}$,PB=BC.則ω=$\frac{π}{4}$.

分析 由題意利用正弦定理求得∠BCP=∠BPC=θ的值,可得∠PBA=2θ的值,判斷△PAB為直角三角形,利用直角三角形中的邊角關(guān)系求得AB的值,可得半個周期的值,從而求得ω的值.

解答 解:由題意PA=PC=2$\sqrt{3}$,可得△PAC為等腰三角形,∴∠PAB=∠PCB=θ,
由PB=BC,可得∠BCP=∠BPC=θ,∴∠PBA=2θ.
令PB=BC=x,則AB=2x,△PAB中,由正弦定理可得$\frac{PB}{sin∠PAB}$=$\frac{AB}{sin∠APB}$,
即$\frac{x}{sinθ}$=$\frac{2x}{sin(π-3θ)}$,∴$\frac{1}{sinθ}$=$\frac{2}{3sinθ-{4sin}^{3}θ}$,∴sinθ=$\frac{1}{2}$,∴θ=$\frac{π}{6}$,∠PBA=2θ=$\frac{π}{3}$,∴∠APB=$\frac{π}{2}$.
由PA=PC=2$\sqrt{3}$,∴PB=BC=$\sqrt{3}$,∴AB=$\frac{PA}{cosθ}$=4=$\frac{1}{2}•\frac{2π}{ω}$,∴ω=$\frac{π}{4}$,
故答案為:$\frac{π}{4}$.

點評 本題主要考查余弦函數(shù)的圖象,正弦定理、直角三角形中的邊角關(guān)系以及三倍角公式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論成立的是( 。
A.函數(shù)f(x)有極大值f(-2)和極小值f(2)B.函數(shù)f(x)有極大值f(-3)和極小值f(1)
C.函數(shù)f(x)有極大值f(-3)和極小值f(3)D.函數(shù)f(x)有極大值f(3)和極小值f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)向量$\overrightarrow{a}$=(x-1,x),$\overrightarrow$=(x+2,x-4),則“$\overrightarrow{a}$⊥$\overrightarrow$”是“x=2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,滿足${S_n}=2{a_n}-{2^n}(n∈{N^*})$.
(1)證明$\{\frac{a_n}{2^n}\}$是等差數(shù)列,并求{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在四棱柱ABCD-A1B1C1D1,側(cè)棱AA1⊥底面ABCD,AB⊥AD,BC∥AD,且AB=2,AD=4,BC=1,側(cè)棱AA1=4.
(1)若E為AA1上一點,試確定E點的位置,使EB∥平面A1CD;
(2)在(1)的條件下,求二面角E-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知Sn是數(shù)列{an}的前n項和,且滿足2Sn=3an-3(n∈N+),等差數(shù)列{bn}的前n項和為Tn,且b5+b13=34,T3=9.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)若數(shù)列{cn}的通項公式為cn=anbn,問是否存在互不相等的正整數(shù)m,k,r使得m,k,r成等差數(shù)列,且cm,ck,cr成等比數(shù)列?若存在,求出m,k,r;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在極坐標(biāo)系中,已知$A(2,\frac{π}{6}),B(4,\frac{5π}{6})$,則A,B兩點之間的距離|AB|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-6x+6,x≥0}\\{3x+4,x<0}\end{array}\right.$,若互不相等的實數(shù)x1,x2,x3,滿足f(x1)=f(x2)=f(x3),則x1•x2•x3的取值范圍是(-21,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.平面直角坐標(biāo)系中,O為原點,A、B、C三點滿足$\overrightarrow{OC}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$,則$\frac{|\overrightarrow{BC}|}{|\overrightarrow{AC}|}$=( 。
A.1B.2C.3D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案