已知函數(shù),若[m]表示不超過m的最大整數(shù),則函數(shù)的值域是   
【答案】分析:化簡(jiǎn)函數(shù),對(duì)x的正、負(fù)、和0分類討論,求出[f(x)-]-[f(-x)-]的值,從而得到所求.
解答:解:,
=2[-]
∵ax>0∴
當(dāng) 時(shí),,,原式為-1
當(dāng) 時(shí),,,原式為-1
當(dāng) 時(shí),時(shí),.,原式為0
故答案為:{-1,0}
點(diǎn)評(píng):本題考查函數(shù)的值域,函數(shù)的單調(diào)性及其特點(diǎn),考查學(xué)生分類討論的思想,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對(duì)應(yīng)值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個(gè)解析式.
(2)根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)(k>0)周期為
3
,當(dāng)x∈[0,
π
3
]
時(shí),方程f(kx)=m恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)把正奇數(shù)數(shù)列{2n-1}中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:設(shè)aij(i,j∈N*)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個(gè)數(shù).
(Ⅰ)若amn=2005,求m,n的值;
(Ⅱ)已知函數(shù)f(x)的反函數(shù)為f-1(x)=8nx3(x>0),若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為bn,求數(shù)列{f(bn)}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把正偶數(shù)列{2n}中的數(shù)按“上小下大,左小右大”的原則排成如圖“三角形”所示的數(shù)表,設(shè)aij(i,j∈N*)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第i行,從左往右數(shù)第j個(gè)數(shù).
(1)若amn=2010,求m,n的值.
(2)已知函數(shù)f(x)的反函數(shù)為f-1(x)=n+125n•x3(x>0,n∈N*),若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為bn.①求數(shù)列{f(bn)}的前n項(xiàng)和Sn;②令Cn=
52n
5n-1
• f(bn) ,{Cn}
的前n項(xiàng)之積為Tn(n∈N*),求證:Tn
4
3
•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•黃岡模擬)把正奇數(shù)數(shù)列{2n-1}中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:設(shè)aij是位于這個(gè)三角形數(shù)表中從上往下數(shù)第i行,從左往右數(shù)第j個(gè)數(shù).
(Ⅰ)若amn=2007,求m,n的值;
(Ⅱ)已知函數(shù)f(x)的反函數(shù)f-1(x)=8nx3(x>0)為,若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為bn,求數(shù)列{f(bn)}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•閔行區(qū)一模)已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,0<ω<2,|φ|<
π
2
)
的一系列對(duì)應(yīng)值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)y=f(x)的解析式;
(2)(文)當(dāng)x∈[0,2π]時(shí),求方程f(x)=2B的解.
(3)(理)若對(duì)任意的實(shí)數(shù)a,函數(shù)y=f(kx)(k>0),x∈(a,a+
3
]
的圖象與直線y=1有且僅有兩個(gè)不同的交點(diǎn),又當(dāng)x∈[0,
π
3
]
時(shí),方程f(kx)=m恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案