分析 (Ⅰ)根據(jù)sinA、sinB、sinC成等差數(shù)列,以及三角形的內(nèi)角和即可求出sin$\frac{B}{2}$,再利用倍角公式即可求出,
(Ⅱ)根據(jù)余弦定理得到a,b,c的關(guān)系,再由正弦定理可得a,c的關(guān)系,即可求出ac,再根據(jù)三角形的面積公式計算即可.
解答 解:(Ⅰ)∵A、B、C為△ABC的內(nèi)角,且$C-A=\frac{π}{3}$.
∴由A+B+C=π,可得$\left\{\begin{array}{l}A=\frac{π}{3}-\frac{B}{2}\\ C=\frac{2π}{3}-\frac{B}{2}\end{array}\right.$(*),
∵sinA、sinB、sinC的值成等差數(shù)列,
∴sinA+sinC=2sinB
將(*)代入上式,化簡得$sin\frac{B}{2}=\frac{{\sqrt{3}}}{4}$.
∴$cosB=1-2{sin^2}\frac{B}{2}$=$\frac{5}{8}$.
(Ⅱ)∵$b=\sqrt{13}$,$cosB=\frac{5}{8}$
由余弦定理,得b2=13=a2+c2$-\frac{5}{4}ac={({a+c})^2}$$-\frac{13}{4}ac$
又∵sinA、sinB、sinC的值成等差數(shù)列,
由正弦定理,得$a+c=2b=2\sqrt{13}$,
∴$13=52-\frac{13}{4}ac$,解得ac=12.
由$cosB=\frac{5}{8}$,得$sinB=\frac{{\sqrt{39}}}{8}$,
∴△ABC的面積${S_{△ABC}}=\frac{1}{2}acsinB$=$\frac{1}{2}×12×\frac{{\sqrt{39}}}{8}=\frac{{3\sqrt{39}}}{4}$
點評 此題考查了正弦、余弦定理,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6x-y+6=0 | B. | x-3y+1=0 | C. | 6x+y+6=0 | D. | x+3y+1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平均數(shù)為64 | B. | 眾數(shù)為7 | C. | 極差為17 | D. | 中位數(shù)為64.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{{2^{n-1}}}}$ | B. | $\frac{1}{{{2^n}-1}}$ | C. | $\frac{1}{{{3^{n-1}}}}$ | D. | $\frac{1}{{{2^{n-1}}+1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{5}}}{5}$ | B. | $\frac{8}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{{8\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com