如圖所示,已知D為△ABC的BC邊上一點(diǎn),⊙O1經(jīng)過點(diǎn)B、D交AB于另一點(diǎn)E,⊙O2經(jīng)過點(diǎn)C、D交AC于另一點(diǎn)F,⊙O1與⊙O2交于點(diǎn)G.

(1)求證:∠EAG=∠EFG;
(2)若⊙O2的半徑為5,圓心O2到直線AC的距離為3,AC=10,AG切⊙O2于G,求線段AG的長.
(1)見解析   (2)2
解:(1)證明:連接GD,
因?yàn)樗倪呅蜝DGE,CDGF分別內(nèi)接于⊙O1,⊙O2,
∴∠AEG=∠BDG,∠AFG=∠CDG,
又∠BDG+∠CDG=180°,
∴∠AEG+∠AFG=180°.
即A,E,G,F(xiàn)四點(diǎn)共圓,∴∠EAG=∠EFG.
(2)因?yàn)椤袿2的半徑為5,
圓心O2到直線AC的距離為3,
所以FC=2=8,
又AC=10,∴AF=2,∵AG切⊙O2于G,
∴AG2=AF·AC=2×10=20,∴AG=2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 已知圓,點(diǎn),直線.
(1) 求與圓相切,且與直線垂直的直線方程;
(2) 在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓O的直徑AB=8,圓周上過點(diǎn)C的切線與BA的延長線交于點(diǎn)E,過點(diǎn)B作AC的平行線交EC的延長線于點(diǎn)P.

(1)求證:BC2=AC·BP;
(2)若EC=2,求PB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線ax+by+c=0與圓x2+y2=9相交于兩點(diǎn)M、N,若c2=a2+b2,則·(O為坐標(biāo)原點(diǎn))等于(  )
A.-7B.-14C.7D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓截直線所得弦的長度為4,則實(shí)數(shù)的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,AB是⊙O的直徑,直線CB切⊙O于點(diǎn)B,直線CD切⊙O于點(diǎn)D,CD交BA的延長線于點(diǎn)E.若AB=3,ED=2,則BC的長為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線,若對任意,直線與一定圓相切,則該定圓方程為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2014·太原質(zhì)檢]過點(diǎn)A(4,1)的圓C與直線x-y-1=0相切于B(2,1),則圓C的方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與圓相交所得線段的長度為 (  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案