已知△ABC的三個內(nèi)角A,B,C所對的三邊分別為a,b,c,若a=3,b=5,c=7,則cosC=
 
考點(diǎn):余弦定理
專題:解三角形
分析:由條件直接利用余弦定理求得cosC的值.
解答: 解:∵已知△ABC中,a=3,b=5,c=7,則由余弦定理可得
cosC=
a2+b2-c2
2ab
=
9+25-49
30
=-
1
2
,
故答案為:-
1
2
點(diǎn)評:本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=2
3
,∠ABC=
π
3

(Ⅰ)證明:AB⊥A1C;
(Ⅱ)求二面角A-A1C-B的余弦值;[注:側(cè)棱垂直于底面的三棱柱叫直三棱柱].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),前n項和為Sn,且滿足2Sn=an2+n-4(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域為[λm,λn],則稱f(x)為“λ倍函數(shù)”.
(Ⅰ)若函數(shù)f(x)=x3為“1倍函數(shù)”,求符合條件的區(qū)間[m,n].
(Ⅱ)若函數(shù)f(x)=k+
x+2
為“1倍函數(shù)”,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos82.5°cos52.5°+cos7.5°cos37.5°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于實數(shù)x的不等式2x2-7x-4>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinωx在區(qū)間[-
π
3
π
4
]上的最小值是-2,則實數(shù)ω的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
3+2i
2-3i
的共軛復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8名同學(xué)爭奪3項冠軍,獲得冠軍的可能性有
 
種.

查看答案和解析>>

同步練習(xí)冊答案