極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸.已知直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線
交于
兩點(diǎn),求弦長(zhǎng)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分7分)選修4—4:極坐標(biāo)與參數(shù)方程
已知直線的參數(shù)方程為
,(
為參數(shù)),圓
的參數(shù)方程為
,(
為常數(shù)).
(I)求直線和圓
的普通方程;
(II)若直線與圓
有公共點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sin θ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo),曲線
的極坐標(biāo)方程為
(其中
為常數(shù)).
(1)若曲線與曲線
只有一個(gè)公共點(diǎn),求
的取值范圍;
(2)當(dāng)時(shí),求曲線
上的點(diǎn)與曲線
上的點(diǎn)的最小距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線
的極坐標(biāo)方程為
.
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)直線(
為參數(shù))與曲線C交于
,
兩點(diǎn),與
軸交于
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)狱c(diǎn),Q都在曲線C:
(β為參數(shù))上,對(duì)應(yīng)參數(shù)分別為
與(0<
<2π),M為PQ的中點(diǎn)。
(Ⅰ)求M的軌跡的參數(shù)方程
(Ⅱ)將M到坐標(biāo)原點(diǎn)的距離d表示為的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(其中
為常數(shù)).
(1)若曲線與曲線
只有一個(gè)公共點(diǎn),求
的取值范圍;
(2)當(dāng)時(shí),求曲線
上的點(diǎn)與曲線
上的點(diǎn)的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
為了解800名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為( ).
A.50 | B.40 | C.25 | D.20 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com