已知(2-
3
x
50=a0+a1x+a2x2+…+a50x50,其中a0,a1,a2…,a50是常數(shù),計算(a0+a2+a4+…+a502-(a1+a3+a5+…a492
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:在所給的二項展開式中,分別令x=1、x=-1,得到2個等式,再把這兩個等式相乘,即可求得要求式子的值.
解答: 解:在(2-
3
x
50=a0+a1x+a2x2+…+a50x50中,
令x=1可得a0+a1+a2+a3+…+a50 =(2-
3
)
50
 ①,
再令x=-1,可得a0-a1+a2-a3+…+a50 =(2+
3
)
50
 ②,
把①②相乘可得 (a0+a2+a4+…+a502-(a1+a3+a5+…a492 =(2-
3
)
50
(2+
3
)
50
=(4-3)50=1.
點評:本題主要考查二項式定理的應(yīng)用,在二項展開式中,通過給變量賦值,求得某些項的系數(shù)和,是一種簡單有效的方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx-2cos2x,則函數(shù)y=f(x)的圖象的一個對稱中心為(  )
A、(
π
8
,1)
B、(
π
8
,-1)
C、(
π
4
,1)
D、(
π
4
,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2-4x-4y-10=0上至少有三個不同的點到直線l:ax+by=0的距離為2
2
,則直線l的傾斜角的取值范圍是(  )
A、[15°,60°]
B、[0°,90°]
C、[30°,60°]
D、[15°,75°]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|2x>1},B={x||x-2|≤3},則(∁UA)∩B等于(  )
A、[-1,0)
B、(0,5]
C、[-1,0]
D、[0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點Q(5,4),若動點P(x,y)滿足
2x-y+2≥0
x+y-2≤0
y-1≥0
,則PQ的最小值為( 。
A、
7
2
2
B、
29
C、5
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,且a=1,c=
2
,cosC=
3
4

(1)求sinA的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知與圓C:x2+y2-2x-2y+1=0相切的直線l交x軸,y軸于A,B兩點,|OA|=a,|OB|=b(a>2,b>2).
(Ⅰ)求證:(a-2)(b-2)=2;
(Ⅱ)求線段AB中點的軌跡方程;
(Ⅲ)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=2x3-3(a+1)x2+6ax.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意的a∈[-3,0],x1,x2∈[0,2],不等式m-am2≥|f(x1)-f(x2)|恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}滿足a1=2,b1=1,
an=
3
4
an-1+
1
4
bn-1+1
bn=
1
4
an-1+
3
4
bn-1+1
(n≥2,n∈N*)則(a3+b3)•(a4-b4)的值為
 

查看答案和解析>>

同步練習(xí)冊答案