1.函數(shù)f(x)=$\frac{\sqrt{x+2}}{x+5}$的最大值為$\frac{\sqrt{3}}{6}$.

分析 將f(x)進行化簡變形,利用基本不等式求出最值,注意等號成立的條件

解答 解:f(x)=$\frac{\sqrt{x+2}}{x+5}$=$\frac{\sqrt{x+2}}{x+2+3}$=$\frac{1}{\sqrt{x+2}+\frac{3}{\sqrt{x+2}}}$,
∵x+2≥0,
∴$\sqrt{x+2}$+$\frac{3}{\sqrt{x+2}}$≥2$\sqrt{3}$,當(dāng)且僅當(dāng)x=1時取等號,
∴f(x)≤$\frac{1}{2\sqrt{3}}$=$\frac{\sqrt{3}}{6}$,
故答案為:$\frac{\sqrt{3}}{6}$

點評 本題考查了利用不等式求函數(shù)的最值問題,屬于基礎(chǔ)題,也是高考中常見的問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(3,-2),則($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對于R上可導(dǎo)的任意函數(shù)f(x),若a>b>1,且有(x-1)f′(x)≥0,則必有( 。
A.f(a)+f(b)<2 f(1)B.f(a)+f(b)≤2 f(1)C.f(a)+f(b)≥2 f(1)D.f(a)+f(b)>2 f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足an+1=an-2an+1an,an≠0且a1=1
(1)求證:數(shù)列$\{\frac{1}{a_n}\}$是等差數(shù)列,并求出{an}的通項公式;
(2)令bn=anan+1,求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合M={-3,-2,-1},N={x|(x+2)(x-3)<0},則M∩N=( 。
A.{-1}B.{-2,-1}C.{-2,-1}D.{-3,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若cos(α+β)cos(α-β)=$\frac{2}{5}$,則sin2β-cos2α=-$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為了了解我校今年報考飛行員的學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,第2小組的頻數(shù)為12,則報考飛行員的學(xué)生人數(shù)是( 。
A.50B.47C.48D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1與$\frac{{x}^{3}}{8}$-$\frac{{y}^{2}}{4}$=1有相同的離心率,則m=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)$f(x)=x-\frac{1}{x}$,對任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,則實數(shù)m的取值范圍是 ( 。
A.m<-1或0<m<1B.0<m<1C.m<-1D.-1<m<0

查看答案和解析>>

同步練習(xí)冊答案