如圖,在正三棱柱ABC—A1B1C1中,底面邊長(zhǎng)及側(cè)棱長(zhǎng)均為2,D是棱AB的中點(diǎn),
(1)求證;
(2)求異面直線AC1與B1C所成角的余弦值.

(1)證明見(jiàn)解析;(2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面, ,   ,的中點(diǎn).
(Ⅰ)證明:;
(Ⅱ)證明:平面
(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)如圖,在直三棱柱中,、分別是、的中點(diǎn),點(diǎn)上,.
求證:(1)EF∥平面ABC;
(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形,中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)如圖,在邊長(zhǎng)為2的菱形中,的中點(diǎn).(Ⅰ)求證:平面 ;
(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題分12分)
如圖,在長(zhǎng)方體中,
,中點(diǎn).
(Ⅰ)求證:
(Ⅱ)在棱上是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,說(shuō)明理由.
(Ⅲ)若二面角的大小為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分 )如圖,在三棱柱中,所有的棱長(zhǎng)都為2,.
  
(1)求證:
(2)當(dāng)三棱柱的體積最大時(shí),
求平面與平面所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)如圖,四棱錐中,底面為矩形,⊥底面,,點(diǎn)是棱的中點(diǎn).                                                   
(Ⅰ)求點(diǎn)到平面的距離;
(Ⅱ) 若,求二面角的平面角的余弦值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題


(本小題滿分14分)
如圖所示,在長(zhǎng)方體中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn)
(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;

(Ⅱ)證明:平面ABM⊥平面A1B1M1

查看答案和解析>>

同步練習(xí)冊(cè)答案