20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如圖:
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);
(Ⅲ)從成績在[50,70)的學(xué)生任選2人,求此2人的成績都在[60,70)中的概率.
考點:古典概型及其概率計算公式,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(Ⅰ)根據(jù)頻率分布直方圖求出a的值;
(Ⅱ)由圖可知,成績在[50,60)和[60,70)的頻率分別為0.1和0.15,用樣本容量20乘以對應(yīng)的頻率,即得對應(yīng)區(qū)間內(nèi)的人數(shù),從而求出所求.
(Ⅲ)分別列出滿足[50,70)的基本事件,再找到在[60,70)的事件個數(shù),根據(jù)古典概率公式計算即可.
解答: 解:(Ⅰ)根據(jù)直方圖知組距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.
(Ⅱ)成績落在[50,60)中的學(xué)生人數(shù)為2×0.005×10×20=2,
成績落在[60,70)中的學(xué)生人數(shù)為3×0.005×10×20=3.
(Ⅲ)記成績落在[50,60)中的2人為A,B,成績落在[60,70)中的3人為C,D,E,則成績在[50,70)的學(xué)生任選2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10個,
其中2人的成績都在[60,70)中的基本事件有CD,CE,DE共3個,
故所求概率為P=
3
10
點評:本題考查頻率分布直方圖的應(yīng)用以及古典概型的概率的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),當(dāng)x≥0時,f(x)=
cosπx,x∈[0,
1
2
]
2x-1,x∈(
1
2
,+∞)
,則不等式f(x-1)≤
1
2
的解集為( 。
A、[
1
4
,
2
3
]∪[
4
3
,
7
4
]
B、[-
3
4
,-
1
3
]∪[
1
4
,
2
3
]
C、[
1
3
,
3
4
]∪[
4
3
,
7
4
]
D、[-
3
4
,-
1
3
]∪[
1
3
,
3
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間20名工人年齡數(shù)據(jù)如下表:
年齡(歲)工人數(shù)(人)
191
283
293
305
314
323
401
合計20
(1)求這20名工人年齡的眾數(shù)與極差;
(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)求這20名工人年齡的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R+上有定義,且滿足以下條件:①f(x)在R+上嚴(yán)格單調(diào)遞減,且x2f(x)>1.②在R+上恒有f2(x)f(f(x)-
1
x2
)=f3(1).
(1)求函數(shù)值f(1);
(2)給出一個滿足題設(shè)條件的函數(shù)f(x)并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(
π
2
,π),sinα=
5
5

(1)求sin(
π
4
+α)的值;
(2)求cos(
6
-2α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)(x∈[-2,6])的圖象如圖.根據(jù)圖象寫出:
(1)函數(shù)y=f(x)的最大值;
(2)使f(x)=1的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A的逆矩陣A-1=(
21
12
).
(1)求矩陣A;
(2)求矩陣A-1的特征值以及屬于每個特征值的一個特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,曲線C1與C2的方程分別為2ρcos2θ=sinθ與ρcosθ=1,以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,則曲線C1與C2交點的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,6這4個數(shù)中一次隨機抽取2個數(shù),則所取2個數(shù)的乘積為6的概率是
 

查看答案和解析>>

同步練習(xí)冊答案