下列函數(shù)為偶函數(shù)的是( 。
A.y=x2+xB.y=x5C.y=x+
1
x
D.y=
1
x2
對(duì)于A,∵(-x)2+(-x)=x2-x,∴函數(shù)非奇非偶;
對(duì)于B,∵(-x)5=-x5,∴函數(shù)為奇函數(shù);
對(duì)于C,∵-x-
1
x
=-(x+
1
x
)
,∴函數(shù)為奇函數(shù);
對(duì)于D,∵
1
(-x)2
=
1
x2
,∴函數(shù)為偶函數(shù)
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=
x2-x4
|x-2|-2
.給出函數(shù)f(x)下列性質(zhì):(1)函數(shù)的定義域和值域均為[-1,1];(2)函數(shù)的圖象關(guān)于原點(diǎn)成中心對(duì)稱;(3)函數(shù)在定義域上單調(diào)遞增;(4)Af(x)dx=0(其中A為函數(shù)的定義域);(5)A、B為函數(shù)f(x)圖象上任意不同兩點(diǎn),則
2
<|AB|≤2
.請(qǐng)寫出所有關(guān)于函數(shù)f(x)性質(zhì)正確描述的序號(hào)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)lnx≤xem2-m-1對(duì)任意的正實(shí)數(shù)x恒成立,則m的取值范圍是( 。
A.(-∞,0]∪[1,+∞)B.[0,1]C.[e,2e]D.(-∞,e)∪[2e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f(x)是定義在R上的奇函數(shù),且f(x+3)f(x)=-1,f(-2)=1,則f(2012)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1.若對(duì)任意a,b∈[-1,1],a+b≠0都有
f(a)+f(b)
a+b
>0

(1)判斷函數(shù)f(x)的單調(diào)性,并說明理由;
(2)解不等式f(x-
1
2
)+f(x-
1
4
)<0
;
(3)若不等式f(x)+(2a-1)t-2≤0對(duì)所有x∈[-1,1]和a∈[-1,1]都恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)f(x)=x2+2ax+2a+1.
(1)若對(duì)任意x∈R有f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍;
(2)討論函數(shù)f(x)在區(qū)間[0,1]上的單調(diào)性;
(3)若對(duì)任意的x1,x2∈[0,1]有|f(x1)-f(x2)|≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)y=f(x+1)為偶函數(shù),且f(x)在(1,+∞)上遞減,設(shè)a=f(log210),b=f(log310),c=f(0.10.2),則a,b,c的大小關(guān)系正確的是( 。
A.a(chǎn)>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f(x)是定義在R上的奇函數(shù),且滿足f(x+3)=f(x),f(1)>1,f(2)=
2m-3
m+1
,則實(shí)數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),若,則的值為(     )
A.3B.0C.-1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案