A. | (x-5)2+(y-3)2=18 | B. | (x-5)2+(y-3)2=9 | C. | (x-3)2+(y-5)2=18 | D. | (x-3)2+(y-5)2=9 |
分析 設(shè)出圓心坐標(biāo),利用過點A(0,2)的圓與直線x-y-4=0相切于P(6,2),結(jié)合斜率公式,求出圓心與半徑,即可求圓的方程.
解答 解:設(shè)圓心為(a,b),則$\left\{\begin{array}{l}{\frac{b-2}{a-6}=-1}\\{{a}^{2}+(b-2)^{2}=(a-6)^{2}+(b-2)^{2}}\end{array}\right.$,
解得a=3,b=5,r=3$\sqrt{2}$.
即所求圓的方程為(x-3)2+(y-5)2=18.
故選:C.
點評 本題考查圓的方程,考查直線與圓的位置關(guān)系,正確求出圓心坐標(biāo)與半徑是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -1或1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是奇函數(shù),又是增函數(shù) | B. | 是偶函數(shù),又是增函數(shù) | ||
C. | 是奇函數(shù),又是減函數(shù) | D. | 是偶函數(shù).但不是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|x|,g(t)=$\sqrt{{t}^{2}}$ | B. | y=x,y=$\frac{{x}^{2}}{x}$ | ||
C. | f(x)=$\sqrt{1+x}$-$\sqrt{x-1}$,y=$\sqrt{{x}^{2}-1}$ | D. | f(x)=$\sqrt{(3-x)^{2}}$,y=x-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{6}$,橫坐標(biāo)縮短為原來的$\frac{1}{2}$ | |
B. | 向右平移$\frac{π}{6}$,橫坐標(biāo)伸長為原來的2倍 | |
C. | 向右平移$\frac{π}{3}$,橫坐標(biāo)縮短為原來的$\frac{1}{2}$ | |
D. | 向右平移$\frac{π}{3}$,橫坐標(biāo)伸長為原來的2倍 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com