17.下列4組式子中表示同一函數(shù)的是(  )
A.f(x)=|x|,g(t)=$\sqrt{{t}^{2}}$B.y=x,y=$\frac{{x}^{2}}{x}$
C.f(x)=$\sqrt{1+x}$-$\sqrt{x-1}$,y=$\sqrt{{x}^{2}-1}$D.f(x)=$\sqrt{(3-x)^{2}}$,y=x-3

分析 根據(jù)兩個函數(shù)的定義域相同,對應關系也相同,判斷它們是同一函數(shù)即可.

解答 解:對于A:f(x)=|x|的定義域{x|x∈R},g(t)=$\sqrt{{t}^{2}}$=|t|的定義域{t|t∈R},它們定義域相同,對應關系也相同,∴是同一函數(shù);
對于B:y=x的定義域為R,y=$\frac{{x}^{2}}{x}$的定義域中{x∈R|x≠0},∴不是同一函數(shù);
對于C:f(x)=$\sqrt{1+x}$-$\sqrt{x-1}$的定義域為{x|-1≤x≤1},而y=$\sqrt{{x}^{2}-1}$的定義域為{x|x≥1或x≤-1},∴不是同一函數(shù);
對于D:f(x)=$\sqrt{(3-x)^{2}}$=|3-x|的定義域為R,值域為{y|y≥0},而y=x-3的定義域和值域為R,∴不是同一函數(shù);
故選A.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.$y=sin3x-\sqrt{3}cos3x$圖象的一個對稱中心可以是( 。
A.(0,0)B.$(\frac{π}{3},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{9},0)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.過點A(0,2)的圓與直線x-y-4=0相切于P(6,2),則圓的方程是( 。
A.(x-5)2+(y-3)2=18B.(x-5)2+(y-3)2=9C.(x-3)2+(y-5)2=18D.(x-3)2+(y-5)2=9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{{{{(x+1)}^2}}}{{\sqrt{x+2}}}$的定義域是(-2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(1)求動點P的軌跡C的方程;
(2)當軌跡C為焦點在y軸上的橢圓時,求λ的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在數(shù)列{an}中,a1=a,a∈Z,an+1=$\left\{\begin{array}{l}{{a}_{n}^{2}-5,{a}_{n}為奇數(shù)}\\{\frac{{a}_{n}}{2},{a}_{n}為偶數(shù)}\end{array}\right.$.
(1)若a=1,求a2,a3,a4;
(2)若?n∈N*,均有an+3=an成立,求滿足題意的整數(shù)a構成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設集合A={x|x2+x≤0,x∈R},則集合A∩Z中有2個元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到一些統(tǒng)計量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.656.36.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(I)根據(jù)表中數(shù)據(jù),求回歸方程y=c+d$\sqrt{x}$;
(II)已知這種產(chǎn)品的年利潤z與x,y的關系為z=0.2y-x,根據(jù)( II)的結果回答下列問題:
(i)當年宣傳費x=90時,年銷售量及年利潤的預報值時多少?
(ii)當年宣傳費x為何值時,年利潤的預報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線$\stackrel{∧}{v}$=α+βu的斜率和截距的最小二乘估計分別為:
$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在△ABC中,已知AB=3,BC=2,∠B=60°,則AC=$\sqrt{7}$.

查看答案和解析>>

同步練習冊答案