精英家教網 > 高中數學 > 題目詳情
    若點P(x,y)在曲線(為參數)上,則使x2+y2取得最大值的點P的坐標是

    A.(6,-8)                            B.(6,8)

    C.(3,-4)                            D.(3,4)

 

答案:A
解析:

解析:化參數方程為普通方程后得.

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=px-
px
-2lnx、
(Ⅰ)若p=3,求曲f9想)在點(1,f(1))處的切線方程;
(Ⅱ)若p>0且函f(x)在其定義域內為增函數,求實數p的取值范圍;
(Ⅲ)若函數y=f(x)在x∈(0,3)存在極值,求實數p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•臨沂二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線y=0,x=a(0<a≤1)和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機投一點P,點P落在區(qū)域A內的概率是
1
64
,則a的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•湖南)函數f(x)=sin (ωx+φ)的導函數y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ=
π
6
,點P的坐標為(0,
3
3
2
),則ω=
3
3

(2)若在曲線段
ABC
與x軸所圍成的區(qū)域內隨機取一點,則該點在△ABC內的概率為
π
4
π
4

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,成都市準備在南湖的一側修建一條直路EF,另一側修建一條觀光大道,大道的前一部分為曲線段FBC,該曲線段是函數y=Asin(ωx+
3
),(A>0,ω>0),x∈[-4,0]
時的圖象,且圖象的最高點為B(-1,3),大道的中間部分為長1.5km的直線段CD,且CD∥EF.大道的后一部分是以O為圓心的一段圓弧DE.
(1)求曲線段FBC的解析式,并求∠DOE的大;
(2)若南湖管理處要在圓弧大道所對應的扇形DOE區(qū)域內修建如圖所示的水上樂園PQMN,問點P落在圓弧DE上何處時,水上樂園的面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•深圳二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線x=1,y=0和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機投一點P,則點P落在區(qū)域A內的概率為( 。

查看答案和解析>>

同步練習冊答案