分析 (I)運用兩點的距離公式和點到直線的距離公式,化簡整理,可得曲線E的方程;
(Ⅱ)假設(shè)存在經(jīng)過點F的直線l交曲線E于A、B兩點,且三角形F′AB的面積為$\frac{40}{21}$.設(shè)直線l:x=my+2,代入橢圓方程x2+5y2=5,運用韋達定理,由三角形的面積公式可得$\frac{1}{2}$•4•|y1-y2|=$\frac{40}{21}$,化簡整理計算即可得到所求直線的方程.
解答 解:(I)由題意可得$\frac{\sqrt{(x-2)^{2}+{y}^{2}}}{|x-\frac{5}{2}|}$=$\frac{2\sqrt{5}}{5}$,
移項兩邊平方可得,x2+y2-4x+4=$\frac{4}{5}$x2-4x+5,
即有曲線E的軌跡方程為$\frac{{x}^{2}}{5}$+y2=1;
(Ⅱ)假設(shè)存在經(jīng)過點F的直線l交曲線E于A、B兩點,
且三角形F′AB的面積為$\frac{40}{21}$.
由題意可得F'(-2,0),設(shè)直線l:x=my+2,
代入橢圓方程x2+5y2=5,可得
(5+m2)y2+4my-1=0,
設(shè)直線l交橢圓E于A(x1,y1)、B(x2,y2)兩點,
可得y1+y2=-$\frac{4m}{5+{m}^{2}}$,y1y2=-$\frac{1}{5+{m}^{2}}$,
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{\frac{16{m}^{2}}{(5+{m}^{2})^{2}}+\frac{4}{5+{m}^{2}}}$=$\frac{2\sqrt{5}\sqrt{1+{m}^{2}}}{5+{m}^{2}}$,
由三角形F′AB的面積為$\frac{40}{21}$,可得$\frac{1}{2}$•4•|y1-y2|=$\frac{40}{21}$,
即有$\frac{2\sqrt{5}\sqrt{1+{m}^{2}}}{5+{m}^{2}}$=$\frac{20}{21}$,解得m=±$\frac{1}{2}$,
可得存在直線l,且方程為x=±$\frac{1}{2}$y+2.
點評 本題考查軌跡方程的求法,注意運用兩點的距離和點到直線的距離公式,考查存在性問題的解法,注意運用直線方程和橢圓方程聯(lián)立,運用韋達定理和三角形的面積公式,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<e<$\frac{1}{5}$ | B. | $\frac{1}{5}$<e<$\frac{1}{3}$ | C. | $\frac{1}{3}$<e<1 | D. | 0<e<$\frac{1}{5}$或$\frac{1}{3}$<e<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)生 | A1 | A2 | A3 | A4 | A5 |
語文(x分) | 89 | 91 | 93 | 95 | 97 |
英語(y分) | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
編號 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | $\sqrt{37}$ | C. | $\sqrt{13}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{3}{5}$,4] | B. | [$\frac{4}{5}$,5] | C. | [$\frac{4}{5}$,6] | D. | [$\frac{3}{5}$,5] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com