【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓經(jīng)過點(diǎn),且點(diǎn)為其右焦點(diǎn).

)求橢圓的標(biāo)準(zhǔn)方程;

)是否存在平行于的直線,使得直線與橢圓有公共點(diǎn),且直線的距離等于4?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

【答案】();()不存在

【解析】

試題分析:()設(shè)出橢圓的標(biāo)準(zhǔn)方程,利用橢圓的定義和焦點(diǎn)坐標(biāo)求出有關(guān)參數(shù)值,進(jìn)而得到橢圓的標(biāo)準(zhǔn)方程;()先假設(shè)存在符合題意的直線,并設(shè)出直線方程,聯(lián)立直線與橢圓的方程,得到關(guān)于的一元二次方程,利用判別式為正和點(diǎn)到直線的距離公式進(jìn)行求解

試題解析:)依題意,可設(shè)橢圓的方程為,且可知左焦點(diǎn)為,

從而有,解得,又,.

橢圓的標(biāo)準(zhǔn)方程為.

)假設(shè)存在符合題意的直線,其方程為.

.

直線與橢圓有公共點(diǎn),,解得.

另一方面,直線的距離等于4,可得,從而.

由于,符合題意的直線不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列是首項(xiàng)為0的遞增數(shù)列,,滿足:對(duì)于任意的總有兩個(gè)不同的根,則的通項(xiàng)公式為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某幾何體的三視圖如圖所示,則它的外接球表面積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,過作垂直于軸的直線交橢圓兩點(diǎn),且滿足.

(1)求橢圓的離心率;

(2)過作斜率為的直線兩點(diǎn). 為坐標(biāo)原點(diǎn),若的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形為等腰梯形,,且于點(diǎn)的中點(diǎn).將沿著折起至的位置,得到如圖所示的四棱錐.

1求證:平面;

2若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi)對(duì)產(chǎn)品進(jìn)行促銷,在一年內(nèi)預(yù)計(jì)銷售量Q(萬(wàn)件)與廣告費(fèi)x(萬(wàn)元)之間的函數(shù)關(guān)系為Q= (x>1),已知生產(chǎn)該產(chǎn)品的年固定投入為3萬(wàn)元每生產(chǎn)1萬(wàn)件該產(chǎn)品另需再投入32萬(wàn)元,若每件銷售價(jià)為“年平均每件生產(chǎn)成本(生產(chǎn)成本不含廣告費(fèi))150%”與“年平均每件所占廣告費(fèi)的50%”之和

(1)試將年利潤(rùn)W(萬(wàn)元)表示為年廣告費(fèi)x(萬(wàn)元)的函數(shù);(年利潤(rùn)=銷售收入-成本)

(2)當(dāng)年廣告費(fèi)為多少萬(wàn)元時(shí),企業(yè)的年利潤(rùn)最大?最大年利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超過的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

1求直方圖中的值;

2設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用量不低于3噸的人數(shù),并說明理由;

3若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn),估計(jì)的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是直線與橢圓的一個(gè)公共點(diǎn),分別為該橢圓的左右焦點(diǎn),設(shè)取得最小值時(shí)橢圓為

I求橢圓的方程;

II已知是橢圓上關(guān)于軸對(duì)稱的兩點(diǎn),是橢圓上異于的任意一點(diǎn),直線分別與軸交于點(diǎn),試判斷是否為定值,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碩族,否則稱為非低碳族,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

(1)補(bǔ)全頻率分布直方圖并求的值(直接寫結(jié)果);

(2)從年齡段在低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中至少有1人年齡在歲的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案