【題目】已知橢圓的左右焦點分別為,過作垂直于軸的直線交橢圓兩點,且滿足.

(1)求橢圓的離心率;

(2)過作斜率為的直線兩點. 為坐標(biāo)原點,若的面積為,求橢圓的方程.

【答案】(1);(2).

【解析】

試題分析:(1)根據(jù)題意畫出圖形可知,則,根據(jù)橢圓定義可知:,所以有,所以,整理得:,所以離心率;(2)由(1)得出:,所以橢圓方程為,則左焦點坐標(biāo)為的直線方程為:,聯(lián)立直線方程與橢圓方程,消去未知數(shù),得到關(guān)于的一元二次方程,顯然,設(shè),于是可以得出的值(均為含的表達式),將的面積表示成,再轉(zhuǎn)化成,整理后得到關(guān)于變量的方程,解出值后,即求出橢圓的標(biāo)準(zhǔn)方程.

試題解析:(1)點橫坐標(biāo)為,代入橢圓得,

解得,.

,,.

(2)橢圓方程化為,直線為:,聯(lián)立可得,6分

設(shè),則,得.

的面積為:

,

,橢圓的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】增強市民的節(jié)能環(huán)保意識,鄭州市面向全市征召義務(wù)宣傳志愿者,從符合條件的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:

求圖值,并根據(jù)頻率分布直方圖估計這500名志愿者中年齡在的人數(shù);

抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔(dān)任主要負責(zé)人這3名志愿者中“年齡低于35歲”的人數(shù)為分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,將ABF沿AF折起,得到如圖2所示的三棱錐ABCF,其中BC=

)證明:DE平面BCF;

)證明:CF平面ABF;

)當(dāng)AD=時,求三棱錐FDEG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知國家某5A級大型景區(qū)對擁擠等級與每日游客數(shù)量單位:百人的關(guān)系有如下規(guī)定:當(dāng)時,擁擠等級為優(yōu);當(dāng)時,擁擠等級為;當(dāng)時,擁擠等級為擁擠;當(dāng)時,擁擠等級為嚴重擁擠。該景區(qū)對6月份的游客數(shù)量作出如圖的統(tǒng)計數(shù)據(jù):

下面是根據(jù)統(tǒng)計數(shù)據(jù)得到的頻率分布表,求出的值,并估計該景區(qū)6月份游客人數(shù)的平均值同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表;

游客數(shù)量

單位:百人

天數(shù)

頻率

某人選擇在6月1日6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為優(yōu)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知過點的直線的參數(shù)方程是為參數(shù).以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.

求直線的普通方程和曲線的直角坐標(biāo)方程;

若直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=si n-2cos2+1.

(1)f(x)的最小正周期;

(2)若函數(shù)y=f(x)y=g(x)的圖象關(guān)于直線x=1對稱,求當(dāng)x,y=g(x)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點的橢圓經(jīng)過點,且點為其右焦點.

)求橢圓的標(biāo)準(zhǔn)方程

)是否存在平行于的直線,使得直線與橢圓有公共點,且直線的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù);在以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

I求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

II若射線與曲線,的交點分別為異于原點,當(dāng)斜率時,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了迎接世博會,某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛為了便于結(jié)算,每輛自行車的日租金只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用表示出租自行車的日凈收入即一日中出租自行車的總收入減去管理費用后的所得。

1求函數(shù)的解析式及其定義域;

2試問當(dāng)每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

同步練習(xí)冊答案