已知三個數(shù)成等比數(shù)列,其和為28,其積為512,求這三個數(shù).
考點(diǎn):等比數(shù)列
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)這三個數(shù)為
a
q
、q、aq,由已知可得
a
q
+a+aq=28  ①
q
a
•a•aq=512   ②
解得即可.
解答: 解:設(shè)這三個數(shù)為
a
q
、q、aq,
a
q
+a+aq=28  ①
q
a
•a•aq=512   ②

由②得a=8.
把a(bǔ)=8代入①得:
2
q
+2q=5,化為2q2-5q+2=0,
解得q=2或
1
2

∴這三個數(shù)為4,8,16或16,8,4.
點(diǎn)評:本題考查了等比數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx-1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中Q為原點(diǎn)),則K的值為( 。
A、
3
,-
3
B、4,-
3
C、
3
,-1
D、1,-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+2bx+1(a,b為實(shí)數(shù)),x∈R,F(xiàn)(x)=
f(x)  ,  x>0
-f(x) ,  x<0 

(Ⅰ)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
(Ⅱ)設(shè)m•n<0,m+n<0,a<0且f(x)為偶函數(shù),判斷F(m)+F(n)能否小于零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程ax2+bx+2=0的兩根為-
1
2
和2.
(1)求a、b的值;
(2)解不等式ax2+bx-1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(3,1),直線ax-y+4=0及圓(x-1)2+(y-2)2=4.
(1)求過M點(diǎn)的圓的切線方程;
(2)若直線ax-y+4=0與圓相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在任何兩邊都不相等的銳角三角形ABC中,已知角A、B、C的對邊分別為a、b、c,且2sin2A-cos2A
=2
(Ⅰ)求角B的取值范圍;
(Ⅱ)求函數(shù)y=2sin2B+sin(2B+
π
6
)
的值域;
(Ⅲ)求證:b+c<2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若把函數(shù)y=sinωx的圖象向左平移
π
3
個單位長度后,與函數(shù)y=sin(
π
2
+ωx)
的圖象重合,則ω的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足|
a
|=|
b
|=1
,且它們的夾角為60°,則|2
a
-
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x2+mx+n>0的解集是{x|x>3或x<-2},則二次函數(shù)y=2x2+mx+n的表達(dá)式是(  )
A、y=2x2+2x+12
B、y=2x2-2x+12
C、y=2x2+2x-12
D、y=2x2-2x-12

查看答案和解析>>

同步練習(xí)冊答案